A Young Person's Guideto The Simple
Objea AccessProtocaol:

SOAP Increases hteroperability Across
Platforms and L anguages

Don Box
This article asumes you're familiar with COM and XML
Level of Difficulty 1 2
Code for this article: SOAP.exe (32KB)

EIQI IMMARY The Si mplp ﬂh_i ed Access Pratocol (QﬂA D) fadlit ates
interoperabili ty among a wide range of programs and platforms,
making existing appli cations accessible to a broader range of users.
SOAP combines the proven Web tech-no-logy of HTTP with the
flexibili ty and extensibili ty of XML.

This article takes you on a ammprehensive tour of Objed RPC
technology to help you urderstand the foundations of SOAP and the
ways it overcomes many of the limitations of existingtechnologies,
including DCOM and CORBA. Thisisfoll owed by a detail ed
treament of the SOAP encoding rules with afocus on how SOAP
maps onto existing ORPC concepts.

=T

hen | began my computing caree in 1984 most programmers didn’t care éout network protocols.

‘ or, sometime in the 19905 networking became ubiquitous, and now it’s hard to imagine using a cmputer
some form of connedivity. Today the average programmer is more interested in building scaable,

ted appli caions than implementing floating, semi-transparent, nonredangular, owner-drawn Coolbarsin

MFC.

Programmers prefer to think in terms of programming models, not network protocols. Though that’ s generally a
goodthing, in thisarticle I'll discuss the Simple Objea AccessProtocol (SOAP), a network protocol that happens to
have no explicit programming model. This doesn’t mean that the achiteds of SOAP (including the author) are out
to fundamentally change the way you program. Rather, one of the primary goals of SOAP isto make your existing
programs more accesible to a broader range of users. To this end, thereis no SOAP API or SOAP Objed Request
Broker (ORB). Instead, SOAP assumes that you will use & much existing technology as possble. Several major
CORBA vendors have committed to suppart the SOAP protocol in their ORB products. Microsoft has committed to
suppat SOAP in future versions of COM. DevelopMentor has developed referenceimplementations that make
SOAP accesshle to any Java-language or Perl programmer on any platform.

The guiding principle behind SOAP isto "first invent no new technology." SOAP uses two existing and widely
deployed protocols: HTTP and XML. HTTP is SOAP s RPC-style transport, and XML isits encoding scheme. With
afew lines of code and an XML parser, HTTP servers sich as Microsoft® Internet Information Server (11S) and
Apache instantly become SOAP ORBSs. Given the fact that over half of the planet’s Web trafficisdireded at 1 S or
Apache, SOAP benefits from the proven engineeing and wide availabili ty of these two products. This does not
mean, however, that all SOAP reguests must be routed through a Web server. Traditional Web servers are just one
way to dispatch SOAP requests. Web serviceslike Il S or Apacdhe ae sufficient, but by no means necessary for

buil ding SOAP-enabled appli cations.

Asthisarticle will describe, SOAP simply codifies the use of XML asan HTTP payload. The most common
applicaion of SOAP is as a Remote Procedure Call (RPC) protocol. To understand how SOAP works, it is useful to

take abrief look into the history of RPC protocols.

RPCs Throughout History

The two daminant communication models for buil ding distributed appli cations are message passing (often combined
with queuing) and request/resporse. Message passng systems typicdly allow any party to send messages at any
time. Request/response protocols restrict the ammmunicaion pattern to request/response pairs. Messaging-based
applicdions are aaitely aware that they are communicating with external concurrent processes and require an

explicit design style. Request/resporse-based appli cations more dosely resemble asingle-processapplication, since
the goplicaion that sends the request is more or lessblocked urtil it recaves the response from the second process
This makes request/response communications a natural fit for RPC applications.

Whil e both messaging and request/resporse have their advantages, either one can be implemented in terms of the
other. Messaging systems can be built using lower-level request/response protocols. For example, Microsoft
Message Queue Server (MSMQ) uses DCE RPC internally for most of its control logic. RPC systems can be built
using lower-level messaging systems. MSMQ provides a arrelation ID for exadly this purpose. For better or worse,
most applicatlions tend to use RPC protocols due to their wider availabili ty, simpler design, and natural mappingto
traditional programming techniques.

During the 19805, the two daminant RPC protocols were Sun RPC and DCE RPC. The most popular Sun RPC
application isthe Network File System (NFS) used by most Unix systems. The most popular DCE RPC applicaion
is Windows NT®, which uses the DCE RPC protocol for a number of system services. Both of these protocols
proved to be quite functional and adaptable to a wide range of appli cations. However, as the decale neared an end,
the industry’ s obsession with objed-orientation went into full swing, motivating programmers acossthe globe to
forge amarriage between objed-oriented languages and RPC-based communications.

The 1990s brought Objed RPC (ORPC) protocols that attempted to marry objed orientation and network protocols.
The primary diff erence between ORPC and the RPC protocols that preceaded them was that ORPC codified the
mapping of a mmunication endpant to alanguage-level objed. Somewhere in the header of ead ORPC request

Request Response

was a @okie that the server-side plumbing could use to locate the target objead in the server process Often this
cookie was just an index into an array, but other techniques were (and are) often used, such as using symbalic names
as keysinto a hash table.

;igure 1 ORPC Request and Response

Figure 1 shows atypicd ORPC request and response message. There ae several request header components that are
used by the server-side plumbing to dispatch the cdl. The objed endpaint ID is used to locate the target objed
inside the server process The interfacel D and method ID are used to determine which method to cdl on the target
objed. The payload is used to transport the values of any [in] and [in, out] parameters as part of the request (or [out]
and [in,out] parametersin the cae of aresponse). Note that optional protocol extensions can appea between the
header fields and the payload. Thisis sandard pradicein protocol design, asit allows new servicesto be
piggybacdked on an ORPC request or response. Most ORPC systems use this areafor transmitting additional context
information (such as transadion information and causality identifiers).

At thistime, the two dominant ORPC protocols are DCOM and CORBA’s Internet Inter-ORB Protocol (110P)
flavor of the General Inter-ORB Protocol (GIOP). The request formats from DCOM and I OP/GIOP are extremely
similar, as $rown in Figure 2.

magic (GIOP) Object Endpoint 1D version+flags*msgtype
meéssage size Method Identifier frag_length/auth_length

service_contest
(protocol extensions)

varsion+flags+msgtypa Interface ldantifier

T | .

- ohject nuid
whjuct_key (COM Interface Pointer 1D)
pperation ORPCTHIS
(method name as string) [protocel extensions)

Payload
[ia] and [in, out] params

Payload DCOM

[in] and [in, out] params

lor/GlopP

Eoth protocols use an objed endpoint ID to identify the target objed, as well asa method identifier to determine
which method to invoke.

that with IlOP/GIOP, the interfacel D isimplicit, since agiven CORBA objed only implements one interface
(although the Objea Management Group (OMG) is currently standardizing suppart for multi ple interfaces per
objed). Another subtle difference between DCOM and 11 OP/GIOP requestsis the format of parameter valuesin the
payload. In DCOM, the payload is written in aformat known as Network Data Representation (NDR). In
IOP/GIOP, the payload is written using Common Data Representation (CDR) format. Both NDR and CDR ded
with the differing data representations used on various platforms. However, there ae some minor differences
between these two formats that make them incompatible with one another.

Another key distinction between ORPC and RPC protocols is how communication endpants are named. In ORPC

endpants on the network, but at the end of the day these mecdhanisms all map down to |ORs or OBJREFs. Figure 3
signature (MEOW)

{type of interface)

Object Endpoint ID

flags (0x1)

(type of intarface)

st Mags

IP Host Address gy port |

object_key

std.cPublicRefs

std. oxid Logical Com n
{Logical Hlt;lﬂll“lrl oglcal Components camponents
std.oid (vptional)
{Object D) CORBA IOR

std.ipid
{Interface Pointer ID)
std.saResAddr
[host names for
O0XID resalver + security}

DCOM OBJREF

shows how an IOR/OBJREF relates to the aldresgng information found in 11OP/DCOM request messages.

What' s Wrong with this Picture?

While DCOM and I OP are both solid protocols, the industry has not shifted completely to either one. The lad of
convergenceis partly due to cultural issues. Additionally, the technicd applicabili ty of both protocols has been
cdled into gquestion as organizations have tried to standardize on one protocol or the other. The conventional
wisdom isthat DCOM and CORBA are bath reasonable protocols for server-to-server communicaions. However,
both DCOM and 11 OP have severe weaknesses for client-to-server communicaions, espedally when the dient
madahines are scatered aaossthe Internet.

DCOM and CORBA/II OP bath rely on single-vendor solutions to use the protocol to maximum advantage. Though
bath protocols have been implemented on avariety of platforms and products, the redity isthat a given deployment
neals to use asingle-vendor’simplementation. In the cae of DCOM, this means every machine runs Windows NT.
(Although DCOM has been ported to ather platforms, it has only achieved broad read on Windows®.) In the cae
of CORBA, this means that every machine runs the same ORB product. Yes, it is possble to get two CORBA
products to cdl one another using Il OP. However, many of the higher-level services (such as security and
transadions) are not generally interoperable & thistime. Additionally, any vendor-spedfic optimizations for same-
macdhine ommunications are very unlikely to work unlessall appli cations are built against the same ORB product.
DCOM and CORBA/IIOP bath rely on a dosely administered environment. The odds of two random computers
being able to successfully make DCOM or 11 OP cdls out of the box are fairly low. Thisis espedally true when
seaurity isinvolved. Whileit is possible to write ashrink-wrap applicaion that can use DCOM or [1OP successfully,
doing so requires much more dtention to detail than the typicd sockets-based applicaion. Thisis espedally
applicable to the unglamorous but necessary task of configuration/install ation management.

DCOM and CORBA/II OP bath rely on fairly high-tech runtime environments. While in-processCOM is deceptively
simple, building the COM/DCOM remoting plumbingis definitely not a weekend projed. Il OP isasimpler protocol
to implement than DCOM, but both protocols have their fair share of arcane rules deding with data dignment, type
information, and bit twiddling. This makesit difficult for the average programmer to simply cruft up a CORBA or
DCOM cdl without the benefit of an ORB product or OLE32.DLL.

Perhaps the most damning limitation of DCOM and CORBA/IIOP istheir inabili ty to work in Internet scenarios. In
the cae of DCOM, it isunlikely that the average user’ s Bondi-blue iMacor chegp PC clone running Windows 95
will be aleto perform domain-based authentication with your servers. Worse, if afirewall or proxy server separates
the dient and server machines, the likelihood d either 110OP or DCOM padkets getting through is extremely low due
to the HTTP bias of most Internet connedivity technology. While vendors like Microsoft, 1ona, and Visigenic have
al built tunneling tedhnology, these products tend to be very sensitive to configuration mistakes and are not
interoperable.

None of these issuesimpad the use of DCOM or 110OP within a server farm. The number of host machinesin a
server farmisrelatively small (hundreds, not tens of thousands), which marginalizesthe st of DCOM'’s ping-
based lifecycle management. Chances are that all of the host machinesin the server farm are under a dmmon
administrative domain, which makes consistent configuration quite likely. The relatively small number of machines
also helpsto keep the msts of using commercial ORB products under control, as a smaller number of ORB licenses
are negded. If 11 OP is only spoken within the server farm, a small er number of ORB licenses are nealed. Finally, it
islikely that all of the host machinesin a server farm will have dired |P connedivity, removing the firewall-rel ated

problems of DCOM and 11 OP.

HTTP as aBetter RPC

It iscommon pradiceto use DCOM or CORBA within a server farm, but to use HTTP to enter the server farm from
a dient machine. HTTP isavery RPC-like protocol that is simple, widely deployed, and more likely to function in
the faceof firewalls than any other protocol known to man. HT TP requests are typicdly handled by Web server
software (such as Il S and Apache), but an increasing number of application server products are suppatingHTTP as
a native protocol in addition to DCOM and I OP.

Like DCOM and 11 OP, HTTP layers request/response communications over TCP/IP. An HTTP client connedsto an
HTTP server using TCP. The standard pat number used in HTTP is port 80, but any port can be used. After

establi shing the TCP connedion, the dient can send an HT TP reguest message to the server. The server then sends
an HTTP response message back to the dient after processng the request. Both the request and response messages
can contain arbitrary payload information, typicdly tagged with the Content-Length and Content-Type HTTP
headers. The following isalegal HTTP request message:

POST /foobar HTTP/1.1
Host: 209.110.197.12
Content-Type: text/plain

Content-Length: 12

Hello, World

Y ou may have noticed that the HTTP headers are just plain text. This makesit essy to dagnose HTTP problems
using a padket sniffer or text-based Internet toaols like telnet. The text-based nature of HTTP also makesit easily
adaptable to low-tech programming environments popular in Web development.

Thefirst line of an HTTP request contains three @mponents: the HT TP method, the Request-URI, and the protocol
version. In the previous example, these wrrespond to POST, /foobar, and HTTP/1.1, respedively. The Internet
Engneaing Task Force (IETF) has sandardized afixed nunber of HTTP methods. GET isthe HTTP method used
to surf the Web. POST is the most commonly used HTTP method for buil ding applications. Unlike GET, POST
alows arbitrary datato be sent from the dient to the server. The Request-URI (Uniform Resource ldentifier) is
simply atoken used by the HTTP server software to identify the target of the request (much like an Il OP/GIOP
objed_key or aDCOM IPID). For more information on URIs sethe sidebar, "URIs, URLs, and URNs." The
protocol version in thisexampleis HTTP/1.1, which indicates that the rules of RFC 2616are to be observed.
HTTP/1.1 added severa feauresto its predecessor (HTTP/1.0), including suppart for chunked data transfer and
explicit suppart for kegping TCP connedions alive acossHTTP requests.

The third and fourth lines of the request spedfy the size ad type of the request payload. The Content-Length header
spedfies the number of bytes of payload information. The Content-Type identifier spedfies the syntax of the
payload information asaMIME type. HTTP (like DCE) allows the dient and server to negotiate the transfer syntax
used to encode information. Most DCE applicatiions use NDR. Most Web appli cations use text/html or other text-
based syntaxes.

Pay attention to the blank line between the Content-Length header and the request payload in the amde sample.
Individual HTTP healers are delimited by a cariage-return/line-feed sequence, and the headers are delimited from
the payload using an extra cariage-return/line-feed sequence. The regquest then contains raw bytes whose syntax and
length are identified by the Content-L ength and Content-Type HTTP headers. In this example, the cntent isthe 12-
byte plain text string "Hello, World".

After procesdng the request, the HTTP server is expeded to send an HTTP response bad to the dient. The
response must contain a status code indicating the outcome of the request. The response can also contain arbitrary
payload information much like the request message. The followingisan HT TP response message:

200 OK
Content-Type: text/plain
Content-Length: 12

dirow ,olleH

In this case, the server returned a status code of 200, which is the standard successcode for HTTP. Had the server
been ureble to decode the request, it would have returned the foll owing resporse insteal of the one shown
previoudly:

400 Bad Request

Content-Length: 0

Had the HTTP server dedded that requests for the target URI should be temporarily redireced to adifferent URI,
the foll owing response would have been returned:

307 Temporarily Moved

Location: http://209.110.197.44/foobar

Content-Length: O

This response informs the dient that the request could be satisfied by retransmitting it to the endpdnt identified in
the Location HTTP header.

All of the standardized status codes and headers are documented in RFC 2616 Very few of them relate diredly to
SOAP users, with one notable exception. In HTTP/1.1, the underlying TCP connedion is reused acossmultiple
reguest/response pairs. The HTTP Connedion healer al ows either the dient or the server to close the underlying
connedion. By adding the following HTTP header to arequest or response, both sides are required to shut down
their TCP connedions after processng the request.

Connection: close
To keep the TCP connedion alive when interoperating with HTTP/1.0 software, it is recommended that the sender

add the following HT TP header to ead request or response;

Connection: Keep-Alive
This header disabled the default HTTP/1.0 behavior of resetting the TCP connedtion after ead response.
One of the advantages of HTTP is its wide deployment and accetance

static String http_reverse(String serverAddress, String s) throws Throwable

{

}

java.net.URL url = new java.net.URL(serverAddress);

java.net.HttpURLConnection conn =
(java.net.HttpURLConnection)url.openConnection();

conn.setRequestMethod("POST");

conn.setRequestProperty("Content-Type", "text/plain");

conn.setDoOutput(true);

conn.connect();

java.io.OutputStream out = conn.getOutputStream();

out.write(s.getBytes());

out.close();

java.io.InputStream in = conn.getinputStream();

byte[] rgb = new byte[1024];

int cb = in.read(rgb);

in.close();

return new String(rgb, 0, cb);

Figure 4 shows a simple Java-language program that sends the request shown previously and parses out the
resultant string from the resporse. The following isasimple C program that uses CGl to rea the string from the
HTTP request and write the reversed version badk out through the HTTP response.

#include <stdio.h>

int main(int argc, char **argv) {

}

char buf[4096];

int cb = read(0, buf, sizeof(buf));
buf[cb] = 0;

strrev(buf);

printf(*200 OK\r\n");
printf("Content-Type: text/plain\r\in");
printf("Content-Length: %d\r\n", cb);
printf(*\r\n™);

printf(buf);

return O;

public class ReverseServlet extends javax.servlet.http.HttpServiet

{

}

public void doPost(javax.servlet.http.HttpServietRequest

request,
javax.servlet.http.HttpServietResponse
response)
throws java.io.|OException
{
byte[] rgb = new byte[request.getContentLength()];
int cb = request.getinputStream().read(rgb);
StringBuffer sb = new StringBuffer(new String(rgb, O,
cb));
response.getWriter().print(sb.reverse());
}

Figure 5 shows a more modern version of the server implemented as a Java-language servlet to avoid the overhead

of CGI’s processper-request model.

In general, CGlI isthe way to write HTTP server code for the lowest common denominator. Virtually every HTTP
server product provides a much more dficient mecdhanism to get your code to processan HTTP request. |1 S provides
ASP and ISAPI as the native mechanisms for writing HT TP code. Apache dlows you to write modulesin C or Perl

7

that run inside the Apache daemon. Most application server products al ow you to write Java-language servlets,
COM components, EJB sesson keans, or CORBA servants based on the Portable Objed Adapter (POA) interface

XML asaBetter NDR
HTTPisafairly functional RPC protocol that provides most—if not all—of the functionality of Il OP or DCOM in
terms of framing, connedion management, and suppart for serialized objed references. (URLs are surprisingly close
to IORs and OBJREFsin functionality.) What HTTP ladks is a single standard format for representing the
parameters of an RPC cdl. Thisiswhere XML comesin.
Like NDR and CDR, XML isaplatform-neutral data representation protocol. XML allows datato be serialized into
atransmissible form that is easily deaoded on any platform. XML has the foll owing charaderistics that differentiate
it from NDR and CDR:

e Thereisaplethoraof XML encoding and decoding software that is avail able for virtually every

programming environment and platform.
e XML istext-based and fairly easy to handle from low-tech programming environments.
e |t'san extremely flexible format that can easily be extended in urembiguous ways.

?o suppart extensibility, every element and attribute in XML has a namespaceURI associated with it. ThisURI is
spedfied using the xmins attribute. Consider the foll owing XML document:

<reverse_string
xmlns="urn:schemas-develop-com:StringProcs"
>
<stringl>Hello, World</string1>
<comment xmlns="http://foo.com/documentation'>
This is a comment!!
</comment>
;/reverse_string>

The namespaceURI for the <reverse string> and <stringl> elements is urn:schemas-devel op-com: StringProcs. The
namespaceURI for the <comment> element is http://foo.com/documentation. The fad that the seand URI isalso a
URL isimmaterial. In both cases, the URI is $mply used to disambiguate the <reverse_string>, <stringl>, and
<comment> elements from other elements that may acddentally share the same tag names.

XML allows namespaceURIsto be mapped to locdly unique prefixes as a mnvenience This means that the
following XML document is ssmanticdly equivalent to the previous one;

<sp:reverse_string
xmins:sp="urn:schemas-develop-com:StringProcs"
xmins:doc="http://foo.com/documentation’
>
<sp:stringl>Hello, World</sp:string1>
<doc:comment>
This is a comment!!
</doc:comment>
</sp:reverse_string>
The latter formis considerably easier to author, espedally if many namespaceURIsarein use.
XML also suppartstyped data representation. The emerging XML Schema spedficdion standardizes avocabulary
for describing XML datatypes. The following is an XML Schema description of the <reverse _string> element
shown previously:

<schema
xmins="http://www.w3.0rg/1999/XMLSchema’
targetNamespace="urn:schemas-develop-com:StringProcs'
>
<element name='"reverse_string'>
<type>
<element name='stringl’ type='string' />
<any minOccurs='0" maxOccurs="*'/>
</type>
</element>
</schema>

This XML Schema definition states that the XML namespaceurn:schemas-devel op-com: StringProcs contains an
element named <reverse string> that contains a subelement named stringl (of type string), which is foll owed by
zero or more unspedfied elements.

The XML Schema spedficaion also defines a set of built-in primitive data types as well as a mechanism for
establi shing the type of an element in an XML document. The following XML document uses the XML Schema
type dtribute to asociate type names with elements:

<customer
xmlIns="http://customer.is.king.com'
xmlins:xsd="http://www.w3.0rg/1999/XMLSchema'
>
<name xsd:type='string'’>Don Box</name>
<age xsd:type='float'>23.5</name>
</customer>
Additi onal mechanisms for linking XML document instances to XML Schema descriptions are being standardized at

the time of this writing.

HTTP + XML = SOAP

SOAP codifies the use of XML as an encoding scheme for request and response parametersusingHTTP as a
transport. SOAP dedsin a small number of abstradions. In particular, a SOAP method is smply an HTTP request
and response that complies with the SOAP encodingrules. A SOAP endpant is smply an HTTP-based URL that
identifies atarget for method invocaion. Like CORBA/I1 OP, SOAP does not require that a spedfic objed betied to
agiven endpant. Rather, it is up to the implementor to dedde how to map the objed endpant identifier onto a
server-side objed.

A SOAP request isan HTTP POST request. SOAP requests must use the text/xml content-type. Additionally, they
must contain a Request-URI as per the HT TP spedfication. How the server interprets this Request-URI is
implementation-spedfic, but many implementations are likely to use it to map to either a dassor an objed. A SOAP
reguest must also indicate the method to be invoked using the SOAPMethodName HTTP healer. The
SOAPMethodName healer is smply the goplication-spedfic method name scoped by a URI using a# charader asa
delimeter:

SOAPMethodName: urn:strings-com:IString#reverse

This header indicaes that the method name is reverse and that the scoping URI is urn:strings-com:1String. The
namespaceURI that scopes the method name in SOAP is functionally equivalent to the interfacel D that scopes a
method name in DCOM or |1 OP.

The HTTP payload of a SOAP request is smply an XML document that contains the values of the [in] and [in,out]
parameters of the method. These values are encoded as chil d elements of a distinguished cdl element that shares the
method name and namespaceURI of the SOAPMethodName HT TP header. The cdl element must appea inside the
standard SOAP <Envelope> and <Body> elements (more on these later). The followingillustrates a minimal SOAP
method request:

POST /string_server/Objectl7 HTTP/1.1

Host: 209.110.197.2

Content-Type: text/xml

Content-Length: 152

SOAPMethodName: urn:strings-com:IString#reverse

<Envelope>
<Body>
<m:reverse xmlns:m="urn:strings-com:1String">
<theString>Hello, World</theString>
</m:reverse>
</Body>
</Envelope>

The SOAPMethodName header must match the first child element under the <Body> element, otherwise the cdl
must be rejeded. This all ows firewall administrators to reliably filter cdlsto a particular method without parsing the
XML.

The SOAP response format is similar to that of the request. The response payload will contain the [out] and [in,out]
parameters of the method encoded as child elements of a distinguished response dement. This element’s nameisthe
same & the request’s cdl element caenated with the Response suffix. The following is a minimal SOAP response to
the request shown ealier:

200 OK
Content-Type: text/xml
Content-Length: 162

<Envelope>
<Body>
<m:reverseResponse xmlns:m="urn:strings-com:IString'>
<result>dIrow ,olleH</result>
</m:reverseResponse>
</Body>
</Envelope>
In this case, the resporse dement is named reverseResponse, which is smply the method name foll owed by the
Response suffix. Also, note that the SOAPMethodName HT TP header is absent. This healer isonly required in the
request message, not in the resporse.

Figure 6 The Other ORPC Request

Figure 6 and 7 show how SOAP maps onto the ORPC protocol concepts discussed ealier. What confuses many
SOAP newbies isthat there is no mandate for how a SOAP server will use the request header to dispatch the request;
thisisleft as an implementation detail. Some SOAP servers will map Request-URIs to class names, dispatching the
cdl to either static methods or to instances of the dassthat live for the duration of arequest. Other SOAP servers
will map Request-URIsto oljedsthat are kept alive over time, often using the query string to encode akey that can
be used to locae the objed in the server process Still other SOAP servers will use HTTP cookiesto encode an
objed key that can be used to recover the state of an objed at ead method request. The key thing to remember is
that the dient is oblivious to these differences. The dient software simply forms SOAP requests foll owing the
norms of HTTP and XML, leaving the server freeto servicethe request in whatever manner it seesfit.

—— :

;igure 7 The Other ORPC Objed Reference

Inside the SOAP Payload

The XML aspeds of SOAP are simply an encoding scheme for serializing instances of data typesinto XML. To this
end, SOAP does not mandate the use of atraditional RPC-style proxy. Rather, a SOAP method invocation consists
of at least two datatypes: the request and the resporse. Consider this COM IDL fragment:

[uuid(DEADFOOD-BEAD-BEAD-BEAD-BAABAABAABAA) |
interface IBank : lUnknown {

HRESULT withdraw([in] long account,

[out] float *newBalance,
[in, out] float *amount
[out, retval] VARIANT_BOOL *overdrawn);

}
Under any RPC protocol, the values of the acount and amount parameters would appea in the request message,
and the values of the newBalance and overdrawn parameters would appea on the response, alongside the updated
value of the amount parameter.
SOAP promotes the method request and method response to first class s$atus. In SOAP, the request and response ae
acdually instances of types. To understand how a method like I1Bank::withdraw maps to a SOAP request and
response type, consider the following data type:

11

struct withdraw {
long account;
float amount;
3
Thisis smply abundling of all of the request parameters into a single data type. Similarly, the following data
represents the bundling of all of the response parameters into a single data type.

struct withdrawResponse {
float newBalance;
float amount;
VARIANT_BOOL overdrawn;
h

Given the following simple Visual Basic program that uses the previously defined IBank interface

12

Dim bank as IBank
Dim amount as Single
Dim newBal as Single
Dim overdrawn as Boolean
amount = 100
Set bank = GetObject("soap:http://bofsoap.com/am")
overdrawn = bank.withdraw (3512, amount, newBal)
you can imagine that the underlying proxy (be it a SOAP, DCOM, or an |1 OP proxy) would look something like
HRESULT Proxy_withdraw(long account,
float *newBalance, float *¥amount,
VARIANT_BOOL *overdrawn)

/I serialize [in] params into a struct
withdraw request;
reguest.account = account;
reguest.amount = *amount;
/I send the request message
proxy->Send(&request, sizeof(request));
/I receive the response message
withdrawResponse response = {0 };
proxy->Receive(&response, sizeof(response));
Il deserialize response struct into [out] params
*newBalance = response.newBalance;
*amount = response.amount;
*overdrawn = response.overdrawn;
return S_OK; // or fail

=]

Figure 8. Here, the parameters are seridized into arequest objed prior to sending the request message. Likewise, the
parameters are then deserialized from the response objed receved in the response message. A similar
transformation takes placeon the server side of the cdl.

When invoking methods via SOAP, the request and resporse objeds are seridlized in a well-known format. Every
SOAP payload isan XML document with a distinguished root element cdl ed <Envelope>. The tag name
<Envelope> is soped by the SOAP URI (urn:schemas-xmlsoap-org:soap.vl) as are dl SOAP-spedfic dements and
attributes. The SOAP envelope mntains an optional <Header> element foll owed by a mandatory <Body> element.
The <Body> element has one distinguished root element, which is either the request or the response objed. The
following is an encoding of an IBank::withdraw request:

<soap:Envelope
xmlIns:soap="urn:schemas-xmlsoap-org:soap.vi'>
<soap:Body>
<IBank:withdraw xmins:IBank=
‘urn:uuid:DEADFO0OD-BEAD-BEAD-BEAD-BAABAABAABAA™>
<account>3512</account>
<amount>100</amount>
</IBank:withdraw>
</soap:Body>
</soap:Envelope>
The @rresponding response message would be encoded as:

<soap:Envelope
xmins:soap="urn:schemas-xmlsoap-org:soap.v1l>
<soap:Body>
<IBank:withdrawResponse xmins:IBank=
‘urn:uuid:DEADFO0D-BEAD-BEAD-BEAD-BAABAABAABAA'™>
<newBalance>0</newBalance>
<amount>5</amount>

13

<overdrawn>true</overdrawn>
</IBank:withdrawResponse>
</soap:Body>
</soap:Envelope>
Noticethat the [in, out] parameter appeasin both messages.
After examining the format of the request and response objeds, you may have noticed that the seriali zation format is

genericdly:

14

<t:typename xmins:t="namespaceuri'>

<fieldnamel>field1lvalue</fieldnamel>

<fieldname2>field2value</fieldname2>
</t:typename>
h the cae of the request, the type is the implied C-style struct composed of the [in] and [in, out] parameters of the
corresponding method. For the response, the type is the implied C-style struct composed of the [out] and [in, out]
parameters of the mrresponding method. This gyle of encoding using one child element per field is ometimes
cdled element-normal form (ENF). In general, SOAP only uses XML attributes to convey out-of-band annotations
that describe the information contained as element content.
Like DCOM and 11 OP, SOAP supparts protocol header extensions. SOAP uses the optional <Header> element to
cary the information used by protocol extensions. Had the dient-side SOAP software mntained healer information
to send, the original request would have looked like Figure 9.

15

Figure 9 Using the SOAP Header
<soap:Envelope
xmlns:soap="‘urn:schemas-xmlsoap-org:soap.v1l’>
<soap:Header>
<causality xmlns="http://comstuff.com">
<id>362099cc-aa46-bae2-5110-99aac9823bff</id>
</causality>
</soap:Header>
<soap:Body>
<IBank:withdraw xmins:IBank=
‘urn:uuid:DEADFOOD-BEAD-BEAD-BEAD-BAABAABAABAA’™>
<account>3512</account>
<amount>100</amount>
</IBank:withdraw>
</soap:Body>
</soap:Envelope>

In this case, a header named causality was seriali zed with the request. Upon receving the request, the server-side
software can look at the namespaceURI of the header and processthe header extensions that it recognizes. Here, the
header extension isidentified by the http://comstuff.com URI and is expeding an objed that looks like this:

struct causality {

UUID id;
b
In the cae of the request shown here, the header element can be safely ignored if its URI is not recognized.
You can't safely ignore dl SOAP payload headers. If a particular SOAP header is essentia to the @rred processng
of the message, the particular header element can be marked as mandatory using the SOAP attribute
mustUnderstand="true’. This attribute informs the recever that the header element must be recognized and
processed to ensure proper functionality. To forcethe caisality header shown ealier to be amandatory healer, the
message would be written as foll ows:

<soap:Envelope
xmlIns:soap="urn:schemas-xmlsoap-org:soap.vi'>
<soap:Header>
<causality
soap:mustUnderstand="true’
xmins="http://comstuff.com">
<id>362099cc-aa46-bae2-5110-99aac9823bff</id>
</causality>
</soap:Header>
<l— soap:Body element elided for clarity —>
;/soap:EnveIope>

SOAP software that encounters an unrecgnized mandatory healer element must rejed the message and indicae an
error. If the server finds an urrecognized mandatory header element in a SOAP request, it must return a
distinguished fault resporse and not dispatch the cdl to the target objed. If the dient finds an unrecognized
mandatory header element in a SOAP request, it must return aruntime eror to the cdler. (In the cae of COM, this
v@vould map to a distinguished HRESULT.)

Datatypes

Every element in a SOAP message is a SOAP structural element, aroat element, an accessor, or an independent
element. The soap:Envelope, soap:Body, and soap:Header are the only threestructural elementsin SOAP. Their
basic relationship is described by the following XML Schema fragment:

<schema
targetNamespace='urn:schemas-xmlsoap-org:soap.vl'>
<element name='Envelope'>
<type>
<element name="Header' type="Header’
minOccurs="0" />

16

<element name='Body' type='"Body"'
minOccurs="1" />
</type>
</element>
</schema>

Of the four types of SOAP elements, all but the structural elements are used to represent instances of atype, or
references to instances of atype.

A root element is a distinguished element that is an immediate descendant of either the soap:Body or soap:Header
element. soap: Body has exadly one root element, which represents the cdl, response, or fault objed. Thisroot
element must be the first child element of soap:Body and its tag name and namespaceURI must correspond to the
HTTP SOAPMethodName header, or soap:Fault in the cae of afault message. The soap:Healer element can have
multi ple root elements, one per header extension associated with the message. These root elements must be dired
descendants of soap:Header and their tag name and namespaceURI indicate the type of extension datathat is
present.

Accesor elements are used to represent fields, properties, or data members of atype. Each field of agiven type will
have exadly one accesor element in its SOAP representation. The tag name of the acceor corresponds to the field
name of the type. Consider the foll owing Java dass definition:

package com.bofsoap.IBank;
public class adjustment {
public int account;
public float amount;

}
Serialized instances of this class would look like the following within a SOAP message:

<t:adjustment

xmlins:t="urn:develop-com:java:com.bofsoap.IBank'>

<account>3514</account>

<amount>100.0</amount>
</t:adjustment>
The acce®rs acount and amount in this example ae cdled simple acesrs because they access val ues that
correspond to primitive data types that are defined in Part 2 of the W3C XML Schema spedfication (see
http://www.w3.0rg/ TR/XML Schema-2). This gedficaion formalizes the names and representations of string,
numeric, and date data types, as well as a mechanism for defining new primitive types using the <datatype>
construct inside anew schema definition.
For accesors that refer to simple types, the value is smply encoded as charader data directly below the accesor
element as shown previoudly. For accessors that refer to compound types (those that are themsel ves structured using
child accessors), there ae two techniques for encoding the accer. The simplest way isto embed the structured
value diredly below the accer. Consider the foll owing additiona Java dassdefinition:

17

package com.bofsoap.IBank;
public class transfer {
public adjustment from;
public adjustment to;

If the from and to accessors are encoded using embedded values, a seriali zed transfer objed would look like thisin
SOAP:

<t:transfer
xmins:t="urn:develop-com:java:com.bofsoap.IBank'
>
<from>
<account>3514</account>
<amount>-100.0</amount>
</from>
<to>
<account>3518</account>
<amount>100.0</amount>
</to>
</t:transfer>

In this case, the values of the aljustment objeds are encoded diredly below their accessors.

There ae several isaes that need to be aldressed when considering compound accessors. Consider the transfer class
shown ealier. Both the from and to fields of the dassare objed references that potentially could be null. SOAP uses
the XML Schemas null attribute to indicae null values or references. The foll owing example shows a serialized
transfer objed whose from field is null:

<t:transfer
xmlns:t="urn:develop-com:java:com.bofsoap.|Bank'
xmins:xsd="http://www.w3.0rg/1999/XMLSchemal/instance'

<from xsd:null="true' />
<to>
<account>3518</account>
<amount>100.0</amount>
</to>
</t:transfer>
The implied value of the xsd:null attributeisfalseif it is absent. The nullabili ty of a given element is controlled via
the XML Schema definition. For example, the following XML Schema fragment would only allow the from
accesor to be null:

<type name='transfer' >
<element
name="from’
type="adjustment'
nullable="true’
/>
<element
name="to'
type="adjustment'
nullable="false' <I— false is the default —>
/>
</type>
The senceof anullable atribute in an element’s shema dedaration implies that the dement is not nullablein an
XML document. The exad form of null accessorsis currently being refined—consult the latest version of the SOAP
spedficaion for more information.
Another issue related to accesrs is substitutabili ty due to type relationships. Sincethe aljustment class siown
previoudly is not afina class, it is posgble that the from and to fields of the transfer objed may adually refer to
instances of derived types. To suppart this type-compatible substitution, SOAP uses the XML Schema wnvention of

18

anamespacequalified type dtribute. The value of thistype dtribute is a qualified name to the mncrete type of the
element. Consider the following class that extends the adjustment class

package com.bofsoap.IBank;
public class auditedadjustment extends adjustment {
public int auditlevel,

Given the foll owing Java-language fragment

transfer xfer = new transfer();

xfer.from = new auditedadjustment();

xfer.from.account = 3514; xfer.from.amount = -100;

xfer.from.auditlevel = 3;

xfer.to = new adjustment();

xfer.to.account = 3518; xfer.from.amount = 100;

the serialized form of the transfer objed would look like the following in SOAP:

<t:transfer
xmins:xsd="http://www.w3.0rg/1999/XMLSchema’
xmins:t="urn:develop-com:java:com.bofsoap.IBank'

<from xsd:type="t:auditedadjustment' >
<account>3514</account>
<amount>-100.0</amount>
<auditlevel>3</auditlevel >

</from>

<to>
<account>3518</account>
<amount>100.0</amount>

</to>

</t:transfer>

In this case, the xsd:type dtribute refers to a namespacequalified type name that the deserializer will useto
instantiate the corred type of objed. Because the to accesor referred to an instance of the expeded type (instead of
a substituted derived type), no xsd:type dtribute is required.

The transfer class example just examined managed to sidestep one aiticd problem. What happensif the transfer
objed being serialized was originally initi ali zed this way:

transfer xfer = new transfer();

xfer.from = new adjustment();

xfer.from.account = 3514; xfer.from.amount = -100;

xfer.to = xfer.from;

Based on the previous discusson, the serialized form of the transfer objea would lodk like thisin SOAP:

<t:transfer
xmins:t="urn:develop-com:java:com.bofsoap.IBank'>
<from>
<account>3514</account>
<amount>-100.0</amount>
</from>
<to>
<account>3514</account>
<amount>-100.0</amount>
</to>
</t:transfer>
This representation hastwo problems. The problem that is easiest to understand is that the same information is sent
twice resulting in alarger message sizethan is necessry. A subtler, but ultimately more important problem is that
the identity relationship between the two accesrsislost sincethe deserializer cannot tell the diff erence between
two adjustment objeds with identica values and asingle aljustment objed referred to in two places. Had the
recever of this message performed the foll owing test on the resultant objea, the (xfer.to == xfer.from) test would
never return true.

19

void processTransfer(transfer xfer) {
if (xfer.to == xfer.from)
handleDoubleAdjustment(xfer.to);
else
handleAdjustments(xfer.to, xfer.from);
}

Thefad that (xfer.to.equals(xfer.from)) might return true only compares the values, not the identity of the two
acceswrs.

To suppart seridli zing types that must maintain identity relationships, SOAP supparts multireference accesors. The
accesrs | have examined so far are single-reference accers; that is, the value is embedded below the accesor
element and no ather accessors are dl owed to refer to the value. (Thisis smilar to the concept of [unique]
referencesin NDR.) Multireference acesoors are dways encoded as empty elements that contain only the well-
known soap:href attribute. The soap:href attribute dways contains a fragment identifier that corresponds to the
instancethat the acceor refersto. Had the to and from accessors been encoded as multi-reference acesors, the
serialized transfer objed would look like the following code:

<t:transfer
xmins:t="urn:develop-com:java:com.bofsoap.IBank'>
<from soap:href="#id1' />
<to soap:href="#id1' />
</t:transfer>
This encoding assumes that an instance of atype that is compatible with the aljustment classhas been serialized
elsewhere in the envelope and that the instance has been tagged with the soap:id attribute & foll ows:

<t:adjustment soap:id="id1'
xmins:t="urn:develop-com:java:com.bofsoap.IBank'>
<account>3514</account>
<amount>-100.0</amount>
</t:adjustment>
For multireference acesrs, it is the deseriali zer' s job to resolve the fragment identifiers (such as#id1) to the
proper instance
The previous discusson explained how a multireference accesor is associated with its target instance What has yet
to be explained is where the target instanceis to be serialized. Thisis where the concept of an independent element
and a padkage come into play.

20

Independent Elements
In SOAP, an independent element represents an instance of atype that isreferred to by at least one multireference
accesr. All independent elements are tagged by the soap:id attribute, and the value of this attribute must be unique
throughout the SOAP envelope. Independent elements are encoded as if they were wrapped by an accessor whose
tag name is the namespacequalified type name of the instance In the previous example, the qualified type name of
the instance was t:adjustment.
SOAP restricts where independent elements can be encoded. SOAP defines an attribute (soap:Padkage) that can be
applied to any element. This attribute is used to control where independent elements can be excoded. The SOAP
seriali zation rules state that an independent element must be encoded as a dired descendant of either the
soap:Header element, the soap:Body element, or any other element that’s marked soap:Padkage="true’. By
annotating an element as a padkage, you can guaranteethat the XML element that encodes the instanceis
completely self-contained and has no multireference accesors to elements that are outside of the padkage.
Assume that the transfer classshown ealier corresponds to a method request. If the transfer type is not a pacage,
the independent elements referred to by the to and from accessors would appea as dired descendants of the
soap:Body element, as shown in Figure 10.
Figure 10 Dired Descendent of the SOAP Body
<soap:Envelope
xmins:soap="urn:schemas-xmlsoap-org:soap.vl'
xmins:t="urn:develop-com:java:com.bofsoap.IBank'>
<soap:Body>
<t:transfer> <!-- root elem of Body -->
<from soap:href="#id1' />
<to soap:href="#id1' />
</t:itransfer>
<t:adjustment soap:id='id1'> <!--ind. Elem-->
<account>3514</account>
<amount>-100.0</amount>
</t:adjustment>
</soap:Body>
</soap:Envelope>

Figure 11 Using the SOAP Package
<soap:Envelope
xmlns:soap="urn:schemas-xmlsoap-org:soap.vl'
xmlins:t="urn:develop-com:java:com.bofsoap.|Bank'>
<soap:Body>
<t:transfer soap:Package="true>
<from soap:href="#id1' />
<to soap:href="#id1' />
<t:adjustment soap:id="id1'> <!--ind. Elem-->
<account>3514</account>
<amount>-100.0</amount>
</t:adjustment>
</t:transfer>
</soap:Body>
</soap:Envelope>

=]

Had the transfer type been alegal SOAP padkage type, the encoding would have instead looked like the wdein
Figure 11. Noticethat because the transfer element is a padkage, all of its multireference accesors refer to contained
elements. This makesit easier to trea the transfer element as a distinct fragment of XML that can be separated from
its parent.

There isone exception to the model in which multireference accesors aways refer to independent elements. SOAP
allows accesrs containing string and binary datato be targets of multireference accesors. This meansthat the
following isalegal SOAP fragment:

<t:mytype>
<field1l soap:href="#id1" />

21

<field2 soap:id="id1">Hello, SOAP</field2>
</t:mytype>
Degspite the fad that the acesr2 element has a soap:id attribute, it isadually an accessor and not an independent
element.
SOAP Arrays

Arrays are encoded as a spedal case of a compound type. An array in SOAP must have arank (number of
dimensions) and a cgadty. An array is encoded as a ompound type with each array element encoded as a
subel ement whose name is the namespace-qualified type name of the dement.

Assume the following COM IDL type definition:

struct POINTLIST {

long cElems;

[size_is(cElems)] POINT points][];
3

An instance of thistype would be seriadized as foll ows:

<t:POINTLIST xmlns:t="uri for POINTLIST">
<cElems>3</cElems>
<points xsd:type="t:POINT[3]' >
<POINT><x>3</x><y>4</y></POINT>
<POINT><x>7</x><y>5</y></POINT>
<POINT><x>1</x><y>9</y></POINT>
</points>
<t:POINTLIST>
Had the points field been marked with a[ptr] attribute, the encoding would use amulti reference accesor and would
look like this:

<t:POINTLIST xmins:t="uri for POINTLIST'>
<cElems>3</cElems>
<points soap:href="#x9" />
</t:POINTLIST>
<t:ArrayOfPOINT soap:id="x9" xsd:type="t:POINT[3]>
<POINT><x>3</x><y>4</y></POINT>
<POINT><x>7</x><y>5</y></POINT>
<POINT><x>1</x><y>9</y></POINT>
</t:ArrayOfPOINT>
When encoding an array as an independent element, the tag name is the type name preceded by the ArrayOf prefix.
Like NDR and CDR, SOAP suppats partialy transmitted arrays. If the number of child elementsisless than the
stated capadty, the dements are assumed to be missing from the end of the aray. This can be overridden using the
soap:offset attribute on the cntaining array element:

22

<t:ArrayOfPOINT soap:id="x9' xsd:type="t:POINT[5]'
soap:offset="[1]">
<POINT><x>1</x><y>9</y></POINT>
</t:ArrayOfPOINT>
The soap:off set attribute indicaes the index of the first element that appeasin the aray. In the previous example,
elements 0 and 2through 4 are not transmitted. SOAP also supparts arse arays by annotating each element with
its absolute index using the soap:pasiti on attribute.

<t:ArrayOfPOINT soap:id="x9' xsd:type="t:POINT[9]">
<POINT soap:position="[3]'><x>3</x><y>4</y></POINT>
<POINT soap:position="[7]'"><x>4</x><y>5</y></POINT>
;/t:ArrayOfPOINT>

In this example, elements O through 2, 4 through 6, and 8through 9 are not transmitted.

Please note that the predse syntax of arrays in SOAP is being re-examined at the time of this writing to adjust to the
forthcoming W3C XML Schema spedfication. As always, consult the latest version of the SOAP spedficaion for
more details.

Faults

Occasionally, aserver will not be ale to properly service amethod request. Sometimes this will be due to generic
HTTP errors (say the Request-URI cannot be mapped to alocd resource or there’'san HTTP-level seaurity
violation). Sometimes thiswill be due to problemsin the SOAP trang ation software such as marshaling errors or a
mandatory header that cannot be recognized. Still other reasons are that a request cannot be properly serviced or the
application/objed code deddes that it wantsto return an applicaion-level error to the cdler. Each of these @sesis
explicitly dedt with in the SOAP spedfication.

If an error occurs at the HTTP level prior to dispatching the cdl to any SOAP code, aplain HTTP response must be
returned. The standard HT TP status code numbering is used, with 40Qlevel codesindicating a dient-induced error,
or a500-level codeindicaing a server-induced error. Thisistypically handled automatically by the Web server
software prior to your code exeauting.

Assuming that al iswell at the HTTP layer, the next placewhere arors can occur isin the software that translates
and dispatches the SOAP cdl to some gplicaion code (such asa COM objed or CORBA servant). If an error
occaursin this layer, the server must return afault message in lieu of a standard response message. A fault messgeis
simply an instance of the foll owing type encoded as the root element of a soap:Body:

<schema
targetNamespace="urn:schemas-xmlsoap-org:soap.vl'
>
<element name="Fault'>
<type>
<element name="faultcode’ type='string' />
<element name='faultstring' type="string' />
<element name="runcode’ type='string' />
<element name='detail' />
</type>
</element>
</schema>

?hefaultcode acceor must contain either a well-known SOAP fault code & an integer or a namespace-qualified
value that is application-spedfic. The aurrent SOAP fault codes are shown in Figure 12.
Figure 12 SOAP Fault Codes

Name |Meaing

DCc o<

Version|The cdl was using an unsupparted SOAP version.
Mismat
ch

[eNeN

2 [Must |JAn XML element was receved that contained an

23

0 |Underst |element tagged with mustUnderstand="true" that
0 |and was not understood Ly the recever.

Invalid |Therecavingapplication did not processthe
Reques |request because it was incorredly formed or not
t supparted by the gplicaion.

OO w

Applica] The receaving application faulted when processng
tion the request. The detail element contains the
Faulted |appli caion-spedfic fault.

[@NeREN

The faultstring accessor contains the human-readable description of the aror that occurred. The runcode accesor
contains a string whaose value must be Y es, No, or Maybe, indicaing whether the requested operation was acually
performed prior to the aror generation. The detail accesor isoptional, and is used to contain an appli cation-specific
exception objed.

The followingis an example of a SOAP fault message arresponding to a request containing an unrecognized
mandatory header element:

<soap:Envelope
xmins:soap="urn:schemas-xmlsoap-org:soap.vl'
>
<soap:Body>
<soap:Fault>
<faultcode>200</faultcode>
<faultstring>
Unrecognized 'causality’ header
</faultstring>
<runcode>No</runcode>
</soap:Fault>
</soap:Body>
</soap:Envelope>
Assuming that an application-spedfic fault needed to be returned, you might exped something more like the cde
that’s shown in Figure 13.
Figure 13 Returning an Appli caion-spedfic Fault
<soap:Envelope
xmlns:soap="‘urn:schemas-xmlsoap-org:soap.v1l’>
<soap:Body>
<soap:Fault>
<faultcode>400</faultcode>
<faultstring>
Divide by zero occurred
</faultstring>
<runcode>Maybe</runcode>
<detail>
<t:DivideByZeroException xmIns:t="someURI">
<expression>x = 2 / 0;<expression>
</t:DivideByZeroException>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

In the cae of an applicaion-defined fault, the detail accessor plays the role of the soap:Body element for the
applicdion’s exception/fault objed.

24

Esoterica

Oneremaining HTTP-ism till needsto be aldressed. SOAP supparts (but does not require) the use of the HTTP
Extension Framework conventions for spedfying mandatory HTTP header extensions. These mnventions srve two
purposes. Firgt, they allow an arbitrary URI to be used to scope agiven HTTP header (asin XML namespaces).
Seoond, these mnventions all ow mandatory headers to be distinguished from optional headers (asin
soap:mustUnderstand). The foll owing is an example that uses the HT TP Extension Framework to distinguish the
SOAPMethodName header as a mandatory header extension:

M-POST /foobar HTTP/1.1

Host: 209.110.197.2

Man: "urn:schemas-xmlsoap-org:soap.vl; ns=42"
42-SOAPMethodName: urn:bobnsid:IFoo#Dolt

?he Man header maps the SOAP URI to the header prefix 42 and indicaes that servers that do not recognize SOAP
must return an HT TP error with a status code of 501 (Not Implemented) or 510 (Not Extended). The HTTP method
Qust be M-POST, indicating that mandatory header extensions are present.

Conclusion

SOAP isatyped seridlization format that happensto use HTTP as a request/response messaging transport. SOAP
was designed to work well with the emerging XML Schema spedficaion, and supparts interoperation between
COM, CORBA, Perl, Tcl, the Java-language, C, Python, or PHP programs running anywhere on the I nternet.

| hopethat I’ve given you a deaer understanding of the spedfics of the protocol. | encourage you to experiment
with SOAP either by trying one of the SOAP-enabled systems listed at http://www.develop.com/soap/ or by hacking
something Yo yourself. | found that it takes me less than an hour to get a basic SOAP client and server up and
running using my scripting language of choice (JScript). Y our mil eage may vary depending on your famili arity with
HTTP and XML and the maturity of your target platform.

For related articles e

http://msdn.microsoft.com/xml/general/ soapspecvl.asp
http://www.microsoft.com/mind/0100'soap/soap.asp

The author recommends:

http://www.w3.org/ XML

http://www.devel op.com/soap

Background information:

The author recommends:

I1OP Complete, Willi am Ruh, Thomas Herron, Paul Klinker (Addison Wesley);
Computer Networks, Andrew Tannenbaum (Prentice Hall)

Don Box is a ofounder of DevelopMentor, a COM think tank that educates the software industry in COM, MTS,
and ATL. Don wrote Essential COM, and coauthored the foll ow-up Effective COM (Addison-Wesley, 1998. Readh
Don at http://www.develop.com/dbax.

From the March 2000isaue of MSDN Magazne.
Get it at your locd newsstand, or better yet, subscribe.

25

