
1

Bass, Clements, and Kazman. Software Architecture in Practice, Addison-Wesley
1997:

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.

By "externally visible" properties, we are referring to those assumptions other
components can make of a component, such as its provided services, performance
characteristics, fault handling, shared resource usage, and so on. The intent of this
definition is that a software architecture must abstract away some information from
the system (otherwise there is no point looking at the architecture, we are simply
viewing the entire system) and yet provide enough information to be a basis for
analysis, decision making, and hence risk reduction.

Let's look at some of the implications of this definition in more detail .

First, architecture defines components. The architecture embodies information about
how the components interact with each other. This means that architecture specifically
omits content information about components that does not pertain to their interaction.

Second, the definition makes clear that systems can comprise more than one structure,
and that no one structure holds the irrefutable claim to being the architecture. By
intention, the definition does not specify what architectural components and
relationships are. Is a software component an object? A process? A library? A
database? A commercial product? It can be any of these things and more.

Third, the definition implies that every software system has an architecture, because
every system can be shown to be composed of components and relations among them.

Fourth, the behavior of each component is part of the architecture, insofar as that
behavior can be observed or discerned from the point of view of another component.
This behavior is what allows components to interact with each other, which is clearly
part of the architecture. Hence, most of the box-and-line drawings that are passed off
as architectures are in fact not architectures at all . They are simply box-and-line
drawings.

2

17

Architecture defined (yet again)

�
Software architecture encompasses the set
of significant decisions about the
organization of a software system
- selection of the structural elements and their

interfaces by which a system is composed

- behavior as specified in collaborations among
those elements

- composition of these structural and behavioral
elements into larger subsystem

- architectural style that guides this organization

Mary Shaw, CMU
Grady Booch,

Philippe Kruchten,
Rich Reitman

Kurt Bittner, Rational

3

18

Architecture defined (continued)

�
Software architecture also involves
- usage
- functionality

- performance
- resilience

- reuse
- comprehensibility
- economic and technology constraints and

tradeoffs

- aesthetic concerns

Mary Shaw, CMU
Grady Booch,

Philippe Kruchten,
Rich Reitman

Kurt Bittner, Rational

4

19

Architectural style
�

An architecture style defines a family of
systems in terms of a pattern of structural
organization.

�
An architectural style defines
- a vocabulary of components and connector

types

- a set of constraints on how they can be
combined

- one or more semantic models that specify how
a system’s overall properties can be
de termined from the properties of its parts

Mary Shaw, CMU

5

20

Architecture metamodel

Software
Architecture

Software
Architecture
Description

Architectural
view

is made of

is represented by

Architecture
Design Process

produces

Form

Component

Connection

Architectural
Pattern

is a

is made of

Software
Architects

are actors in

Logical view

Process
view

Implemen-
tation view

Deployment
view

Requirements

satisfies

Architectural style

has

has

has

is a

System
architecture

is part
of

Architecture
Style guide

Constraints

constrains

constrains

Use case
view

relates to

Architectural
Blueprint

depicts

6

26

Representing System Architecture

� � � � � � 	
 � � �

 � � � � � � �� � � � � � � � � � � � �

� ! 	 � � " # � # � � "
 � � �

$ � % & � ' ((� � �) � * � + � , - . � � � / - . - � �

0 1 � � � 2 2
 � � �
3 - , * � , . � � � -) � � � � 4 � � � � �5 6 , � � / 6 7 � �

8 9 � : � (; � : � & � ' : % � � <
� ! 	 � = � " #
 � � �

) � > � - . � � 7 � � � / �? - � � @ - , � A � � > � � � � � � � � �B � . . � � � � � � � � �
8 9 � : � (� � & ; � � � � ; � &

C D E F G H I J K L M N O P Q F K L

R 2 � S � 2 �
 � � �

7

38

Models, Views, and Diagrams

T U V W X U VY Z X [\ X] UT U V W X U VY Z X [\ X] UT U V W X U VY Z X [\ X] U

^ _ V ` X \ Z aY Z X [\ X] U^ _ V ` X \ Z aY Z X [\ X] UW a b b X c a \ X d Z a `Y Z X [\ X] U
^ d X d VY Z X [\ X] U^ d X d VY Z X [\ X] UW a] e a ` V ` dY Z X [\ X] U

f g h i g j k j lm n o p q o h rf g h i g j k j lm n o p q o h rY V e b a s] V ` dY Z X [\ X] U

^ d X d VY Z X [\ X] U^ d X d VY Z X [\ X] Ut c u V _ dY Z X [\ X] U

^ _ V ` X \ Z aY Z X [\ X] U^ _ V ` X \ Z aY Z X [\ X] U^ d X d V _ v X \ dY Z X [\ X] U

T U V W X U VY Z X [\ X] UT U V W X U VY Z X [\ X] U^ V w x V ` _ VY Z X [\ X] U

^ d X d VY Z X [\ X] U^ d X d VY Z X [\ X] UW b X U UY Z X [\ X] U

y _ d Z z Z d sY Z X [\ X] U

{ | } ~ � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � � � � � � � �

� a � V b U

8

46

Component Diagram
�

Captures the physical structure of the
implementation

9

70

Architectural design workflow
�

Select scenarios: criticality and risk
�

Identify main classes and their
responsibility

�
Distribute behavior on classes

�
Structure in subsystems, layers,
define interfaces

�
Define distribution and concurrency

�
Implement architectural prototype

�
Derive tests from use cases

�
Evaluate architecture
Iterate

Use case view

Logical view

Deployment view

Implementation view

Process view

10

48

Deployment Diagram
�

Captures the topology of a system’s
hardware

