Feb. 9, 2000

Inside Soap by bon Box

The Simple Objed AccessProtocol (SOAP) isaminimal set of conventions for invoking code using XML and
HTTP. DevelopMentor, Microsoft, and UserLand Software submitted SOAP to the IETF as an Internet Draft in
December 1999(avail able here). Sincethen, numerous appli cation server/ORB vendors have announced suppart for
the protocol as an Internet-friendly aternative to Microsoft's DCOM, Sun's RMI, and OMG's CORBA/II OP (seethe
SOAP FAQ for alist of supparting vendars and products). SOAP utili zes the existing HT TP-centric fabric of the
Internet to carry method requests that are encoded as XML bath for ease of parsing as well as platform/language
agnosticism.

SOAP walks avery precaious tightrope, balancing the needs of developers using sophisticaed type-centric
technologies like Java and CORBA against the desires of the caual Perl or Tcl programmer writing CGI scripts.
Thistightropeis smilar to the one walked by the W3C Schemas Working Group, who have had to design a
metadata format that satisfies the nealds of objed and database technologies, while & the same time aldressng the
problem of describing document markup. While SOAP does not mandate the use of XML Schemas, it was certainly
designed with them in mind. XML Schemas offer an excdlent way to describe SOAP types and endpants, as their
type model matches that of SOAP very closely.

A Top-Down View

SOAP allows methods to be invoked against endpants over HTTP. A SOAP endpadnt isidentified by a URL (just
like any HTTP-based resource). A SOAP method is uniquely identified by a namespaceURI and an NCName. The
NCName maps to the symbalic name of the method. The namespaceURI scopes the method name, much like an
interfacename scopes a method in Java, CORBA, or COM. SOAP method requests are transported in HTTP FOST
requests. They must have aSOAPMethodNameHT TP header indicating the method being invoked. The following
isaminima SOAP HTTP healer:
POST /objectURI HTTP/1.1
Host: www.foo.com
SOAPMethodName: urn:develop-com:IBank#getBalance
Content-Type: text/xml
Content-Length: nnnn
This HTTP healer indicates that the getBalance method (from the urn:develop-com:IBank namespace
should be invoked against the endpant identified by http://www.fo o.com/objectURI
The HTTP payload of a SOAP method request isan XML document that contains the information needed to invoke
the request. Assuming that all that is needed to get a bank balanceis an acaunt number, the HTTP payload of the
request would look something like this:
<?xml version="1.0'?>
<SOAP:Envelope

xmIns:SOAP="urn:schemas-xmlsoap-org:soap.v1>

<SOAP:Body>
<i:getBalance
xmins:i="urn:develop-com:IBank'>
<account>23619-22A</account>
</i:getBalance>
</SOAP:Body>

</SOAP:Envelope>
After drilli ng through the SOAP:Envelope and SOAP:Body elements, note that "root" element of SOAP:Body
is an element whose namespace-qualified tag name matches the SOAPMethodNameHTTP header exadly. This
redundancy isto all ow the HTTP-based infrastructure (proxies, firewalls, web server software) to processthe cdl
without parsing XML, while dso alowingthe XML payload to stand independent of the surrounding HTTP
message. Since dl that was needed to invoke the getBalance method was an acaunt number, only one child
element appeas below the i:getBalance element.
Upon receving this request, the server-side software is expeded to execute some mde that corresponds to
getBalance . How this happensiscompletely outside the scope of the SOAP protocol. Here ae some possble
readions to the reguest:
A CGI program may run.
An Apache module may be cdled.
An ASP or JSP page may be processed.
A Java Servlet or ISAPI extension may be invoked.
A servant may be dispatched inside aCORBA ORB.

gprLOdhE

6. AnXSLT may be run against the request.

7. A human may real the request and start typing aresponse (unlikely, but legal SOAP!).
Oncethe server-side operation has executed, an HTTP response message will be returned to the dient containing the
results of the operation. There ae no SOAP-spedfic HTTP response headers. However, the HT TP payload will
contain an XML document that contains the results of the operation. The results will be inside an element whose
name matches the method name suffixed by "Resporse." Here's an example response message (includingthe HTTP
header):
200 OK
Content-Type: text/xml
Content-Length: nnnn

<?xml version="1.0"?>
<SOAP:Envelope
xmins:SOAP="urn:schemas-xmlsoap-org:soap.v1l'>
<SOAP:Body>
<i:getBalanceResponse
xmlins:i='urn:develop-com:IBank'>
<amount>45.21</amount>
</i.getBalanceResponse>
</SOAP:Body>
</SOAP:Envelope>
That'sit. SOAP endpants are just URLS. SOAP methods are just a pair of XML element dedarations identified by a
namespaceURI and an NCName.

A Bottom-Up View

Now that we have looked at a simple SOAP method cdl, it is useful to dssect the SOAP protocol from the bottom-
up. Figure 1 shows the implied layering model of SOAP. Whil e the SOAP spedfication is not organized acarding
to thisfigure, the figure ads as a reasonable decomposition of the SOAP protocol. Note that the core of SOAP isthe
XML 1.0 recommendation and XML Namespaces. Thisrefleds the fad that SOAP is $mply an application of
XML.

The next layer isthe XML Schemas gpedfication. While SOAP does not mandate the use of XML Schemas, it was
designed to allow them to ad as its type description language. Additionally, several "XML Schema-isms' appea in
the SOAP spedficdion. In particular, SOAP's use of the xsi:type attribute. Note that neither of these two layers
are SOAP-spedfic. Rather, these ae two tedhnologies that SOAP utilizes. Thefirst "new" layer added by SOAPis

| SOAP over HTTP Mapping

.1 Typed Instance = Request|Response
. —1soAP:Envelope

1 Elamant Normal Ferm (Section 8)

—1 XML Schema Definition Language (opt)

~{ XML 1.0 + Namespaces

the dement-normal-form encoding style described by sedion 8 of the SOAP spedficaion.

Figure 1: SOAP Layers

Encoding I nstances

Sedion 8 of the SOAP spedfication describes the rules used to encode instances of types. The sedion 8 rules
describe an element-normal-form encoding style, in which al properties of an instance ae encoded as child
elements, never as attributes. Consider the following Java dass definition:
public class Person
{
String name;
double age;
}
The sedion 8-compliant encoding of an instance of this type would look like this:
<Person xmIns='someURI'>
<name>Don Box</name>
<age>37</age>
</Person>
From an XML Schemas perspedive, this assumes that the dassdefinition shown above would yield the foll owing
schema definition:
<schema
xmins="http://www.w3.0rg/1999/XMLSchema’
targetNamespace='someURI'
xmins:xsd="http://www.w3.0rg/1999/XMLSchema’
xmins:this='someURI'>

<type name='Person">

<element name='name’
type='xsd:string' />

<element name='age'
type="xsd:double' />

<anyAttribute
namespace='urn:schemas-xmisoap-org:soap.vl' />

<[type>

<element name='Person’ type="this:Person’ />

</schema>
Subordinate objeds are simply encoded dredly beneah the acessor element that describes the referring field.
Consider the following Java dass
public class Marriage
{
Person husband;
Person wife;
}
The sedion 8-compliant encoding of an instance of this type would look like this:
<Marriage xmins="uriForMarriage'>
<husband>
<name>Don Box</name>
<age>37</age>
</husband>

<wife>
<name>Barbara Box</name>
<age>27</age>
</wife>
</Marriage>
Realers famili ar with Don Park's SML work may be feding a bit of dé§avu here. While SOAP is not strictly SML,
the sedion 8 encoding rules have an SML-like flavor, at least for relatively simple types. One departure from SML
is edion 8'streament of shared instances.
In many programming environments, it is possble for one instanceto be referred to from multiple locétions. For
example, consider the following Java mde:
Marriage wedding = new Marriage();

wedding.husband = new Person();
wedding.husband.name = 'Don Box';
wedding.husband.age = 37,
wedding.wife = wedding.husband;
In this case, the wife and husband fields both refer to the same objed. If this usageis allowed for instances of class
Marriage , then the husband and wife fields would be encoded as multi-ref accessors. Multi-ref acessrs have no
child elements. Rather, they have alone dtribute, soap:href , that contains a fragment identifier to an
independent element containing the serialized instance The followingis an encoding of the Marriage objed
shown above using multi-ref accessors.
<Marriage
xmins='uriForMarriage'>
<husband
soap:href="#id-1' />
<wife
soap:href="#id-1' />
</Marriage>

<Person
xmlns='someURI'
soap:id="id-1'>

<name>Don Box</name>

<age>37</age>
</Person>
Inthisand al other examples, assume that the namespaceURI for SOAP (urn:schemas-xmisoap-
org:soap.vl) hasbeen aliased to the soap prefix.

The SOAP Envelope

Looking back at Figure 1, the next layer in the SOAP protocol isthe SOAP:Envelope construct. SOAP defines
the "Envelope" type & a serializaion scope. An Envelope containsan optional Header element followed by a
mandatory Body element. The Header element contains a olledion of healer entries that ad as annotations to the
root element of Body . Thefirst child element of the Body isthe roat of the instance graph held by the Envelope .
For example, to encode an instance of Person inside an Envelope , one would write this:
<soap:Envelope

xmins:soap="uriForSoap">

<soap:Body>
<Person xmlns='someURI'>
<name>Don Box</name>
<age>37</age>
</Person>
</soap:Body>

</soap:Envelope>
When multi-ref accessors are used, the independent elements they refer to are serialized as children of either the
soap:Header or soap:Body elements:
<soap:Envelope
xmlns:soap="uriForSoap">

<soap:Body>
<Marriage
xmins='uriForMarriage'>
<husband soap:href="#id-1' />
<wife soap:href="#id-1' />
</Marriage>

<Person xmlns='someURI'
soap:id="id-1'>
<name>Don Box</name>

<age>37</age>
</Person>
</soap:Body>

</soap:Envelope>
The SOAP:Header element foll ows the same form as the SOAP:Body element. However, it may have more than
one"root," and ead can be marked optional or mandatory using the SOAP:mustUnderstand attribute.

SOAP Methods

The next layer in the SOAP protocol isthe SOAP method. A SOAP method is smply arequest and an optional
response. Both the request and response ae encoded as a seridli zed instance of atype. The type of the request is
simply a<type> whose fields correspond to the in and in-out parameters of the method. Consider the foll owing
CORBA IDL method dedaration:
float f(in float al, inout float a2, out float a3);
The XML Schema definition for the request and response would look like this:
<schema

targetNamespace='interfaceURI' >

<type name='f'>
<element name="al' type="float' />
<element name="a2' type="float' />
<anyAttribute
namespace='uriForSoap' />
<[type>

<type name='fResponse’ >
<element name='a2' type='float' />
<element name='"result' type="float' />
<anyAttribute
namespace='uriForSoap' />
</type>

<element name='f' type='"f' />
<element name="fResponse’ type="fResponse’ />

</schema>

Tedhnicdly, the <f> and <fResponse> elementscould be transmitted using any transport avail able. However,
SOAP codifies the transport of SOAP methods over HTTP, shown as the final layer in Figure 1. The primary face
of the mapping to HTTP is the mandatory use of the SOAPMethodNameHTTP healer in the POST request. This
header must match the tag name of the root element of SOAP:Body exadly. To invoke this method against the
http://example.com/objectURI endpant, the dient sends the following HTTP request:

POST /objectURI HTTP/1.1

Host: example.com

SOAPMethodName: interfaceURI#f

Content-Type: text/xml

Content-Length: nnnn

<SOAP:Envelope
xmIns:SOAP="urn:schemas-xmlsoap-org:soap.v1>
<SOAP:Body>
<i:f
xmins:i='interfaceURI'>
<al>24</al>
<a2>87</a2>
</i:f>
</SOAP:Body>
</SOAP:Envelope>
After servicing the request, the server sends badk the foll owing response:

200 OK
Content-Type: text/xml
Content-Length: nnnn

<SOAP:Envelope
xmIns:SOAP="urn:schemas-xmlsoap-org:soap.v1>
<SOAP:Body>
<i:fResponse
xmins:i='interfaceURI'>
<a2>87.5</a2>
<result>2.4</result>
</i:fResponse>
</SOAP:Body>
</SOAP:Envelope>
What clients do with this response is outside the scope of the SOAP spedfication.

Conclusion

A few detail s of the protocol were glossed over in this article, including the syntax for arrays, fault reporting, the use
of the HTTP extension framework, and suppart for aternative encoding styles. These issues are discussed in detalil

in the SOAP spedficaion.

SOAP s smply an applicaion of XML (and XML Schemas) to HTTP. It invents no new technology. Rather, SOAP
leverages the engineeing effort already invested in HTTP and XML technologies by codifying the gplicaion of the
two in the cntext of remote method invocation.

