Talinna Tehnikaillikool

| nformaatikainstituut

Javal baseeruv objektide pusivuse kiht Jakamar

Bakal aureusetto

Ulipilane: Erki Suurjaak
Matrikli nr: 970772
Juhendaja Tarmo Veskioja

Tdlinn
2001

AUTORIDEKLARATSIOON

Deklareerin, et k&esolev 18putbd on minu to0 tulemus ja seda el ole kellegi teise poolt

varem kaitsmisele esitatud.

(Kuupéev) (16putdo kaitga allkiri)

Java-Based Object Persistence Layer Jakamar

Abstract

My thesis introduces a concrete solution for achieving object persistence in a Java
environment - the object persistence layer Jakamar.

Persistent objects are objects that exist beyond the lifetime of the application; this is
typically achieved by storing them in some kind of a data store, most commonly a
relational database. A basic task for software is producing, changing and viewing such
data. There are several recurring problems that application programmers have to deal with
when devel oping object-oriented applications that use relational databases as a persistence
mechanism. The greatest problem is handling changes in the data structure - a ssimple
alteration forces some reworking in both the application persistence logic and the
database. Larger changes - e.g. switching the underlying database from one vendor to
another - can require a great amount of work. Another concern is application design - the
persistence logic of many applications is similar, differing mainly in the exact data
structure. It would be favorable to exploit this similarity and produce an automated
solution.

| set out to achieve the following goals:

To propose a reusable generic approach to handling persistence logic - the Persistence

Broker design pattern, which solves several problems when using relational database

management systems in an application environment. This pattern represents a solution

where business logic is separated from persistence logic to the degree where persistent
objects are not aware that they are being stored and retrieved. The solution is easily
customizable for the data structure of different applications.

To present Jakamar, a component | had written in the Java programming language as

an implementation of this pattern. Jakamar is an object persistence layer with the sole

purpose of being a building block that is used for developing other applications. It

provides fully automated persistence - the application programmer has no need for

writing any database access code, the component handles all data storage, retrieval

and deletion by itsalf.

To compare using Jakamar with using embedding database access logic directly in

program code, and to compare Jakamar with other software products that follow the

Persistence Broker pattern.

All the three goals were realized. | deemed the Persistence Broker to be a wel-
designed approach to persistence logic, and Jakamar to be a viable software component.
Jakamar encapsulated the entire persistence logic of an application, and provided access
to pessence via smple operations like store(object), delete(object) and
retrieve(criteria). In addition to solving the problems listed above, using Jakamar yielded
better modularized application structure, faster program development (as the programmer
does not need to develop any database access code), and possibility for better performance
on object retrieval.

Keywords: automated persistence, persistence layer, object-relational mapping,
persistence broker.

Contents

INTRODUCTION.....ccovvvrnne

11 BACKGROUND..............
1.2, OBIECTIVE .oierreerrererreeeeneseenessesenes
1.3. THESISCOMPOSITION
14, NOTATION .ottt seeeeseeeeeees
1.4.1. Pattern Notation..........cccceeuuene
1.4.2. Diagram Notation

2. THE PERSISTENCE BROKER PATTERNcociirnrssseses e 10

21. CONTEXT
2.2. PROBLEM
2.3, FORCES....ccoconurmermernerneen:
24. SOLUTION
2.5, RESULTING CONTEXT wecvuvurerrereereeressessesesessessessssssssssessessessssssessssssssssssssssssssssssssessessssssssssssssnsssssssesesesssas 12
2.6. RATIONALE ..o
2.7. KNOWN USES
2.8, EXAMPLE ...otitictetieeeee et se s s £ R e
2.8.1. Example Architecture

2.8.2. ExampleCode.......cccconirruernee.
2.8.2.1. Direct Datahase ACCESS........oveererererererienenes
2.8.2.2. Using aPersistence Broker

3. THEJAKAMAR OBJECT PERSISTENCE LAYER....cco s 19

3.1, INTRODUCTION w..vteeacserseesssessesesssssessesesssessessasssssesessssssssessssssssesssesassesssssesssssssesssnssssessssssssessssesssesssssnssesesnenees
3.2, FUNCTIONALITY
3.2.1. BroKer INSLANLIALION ..ottt s s sessss bt sns e e s st s snsnaesssenas 21
3.2.2. SOMNG AN ODJECTouviieierrietriee ettt b b
3.2.3. Deleting an Object
3.2.4. RETTEVING ODJECES.....cociiiiicieseeee ettt st s s bbbt s s s s s s st psnas
3.3, OBJECT IDENTITIES. . ctuturereueustrereseustetsesessassseeasssssesesssssessessssssssesssssessesssssesssssssesssssassessssesssnsassenssssssssnssssessenees
3.3.1. ldentity Generation
3.4, OBJIECT -RELATIONAL IMAPPING......coturtueueeretuesessestssestsssessssesssesssesessessssessesssssesssssassessssessssssssesssssesssnssesesnesses 28
3.5, ARCHITECTUREttttutueereeseaesseseseaesessesesssesseseassessesess s e s e sesesesseasseses st e s b e s s e e e b e s e et ae b e b ee e b b e b e s b es st b e s aes
3.5.1. Conceptual View

352, Satic VieW...vecvecrricnnnns
3521, PACKAOE JAKAMAcuiieeieteiteiete ettt sttt ettt b e te st et a e e et e eaene s e e e ebe st eneee e e ebeseene et e e eneseenees 31
3.5.2.2. Package jakamar.MEPPIiNGccoceereeerierieuerieerieresieseeessesessesseessesessessesessessssessenessesseseseenessessssesesnenns 35
3.5.2.3. Package jakamar.helpers
3.5.24. Packagejakamar.jdbec.ccooeiieiininiii
AASSOCTBLIONS...c.eeeeeeeeieete ettt ettt sttt e e st st et ebese e st st e e eaeseeaeeEe e eaesEenees e e eaeeeeseRe e eRe b enease e ebeebeneese s ebeeseneeseasenens
3.5.3. DYNAMIC VIBW ..ottt e
3531 SOrage.....cccireeeererieirie et
3532, DEEON....ccieecireee e
3533, Retrieval......ccoooeoiiiininieee e
3.6. ERROR HANDLING
3.6.1. Probable Encountered Errors.........ocovvnrnnenenserenenesennnen.
3.7, SECURITY ettt sesessis et bbbttt
3.7.1. Virtual Machine Security

3.7.2. Application Security
3.7.21. TraCking OPEraLiONScueiririeueirirteteirts ettt bbbt b bbb bt ne b nn et s

3.7.2.2. Consuming Unreasonable AmMOUNtS Of RESOUICESccouiueuiiririeienininieeinesieeesesee s
3.7.2.3. Confidentiality of Authentication Dataand Persistent Data

3.7.3. NEIWOTK SECUFITY ..euvieiieireesereesees ettt
3.7.3.1. Sending Sensitive Dataover The Network............ccccovrereeeee.

3.8, CONCURRENT USE.....citrrirreeneeemmememnernersessersessessssessessensessessessessssssssssens

3.9. LOGGING....cccorurrerrerrers

3.10. CONFIGURATION
3.10.1. Column-to-Field Conversions.........oreeevernernernerneeneeneens
3.10.2. ACCESSING ODJECE FIEIUS.... ..ot
3.10.3. Obtaining New Instances of PersiStent CIASSES...........crereneneninesee s essess s
3.10.4. Special SQL Syntax
3.10.5. Generating ObjECt [HENTITIES.......cvvceieeerierrieer e
3.10.6. Caching PersiStent OIJECES.........c et

311, FURTHER DEVELOPMENT ..ocetiiiietetsetsetstestsstssssesssssese ettt et ssssssns

BENEFITS AND TRADEOFFS ...t

4.1. JAKAMAR COMPARED TO EMBEDDING SQL DIRECTLY ..ocivicteiictrererneieesetsessssssessssessssessssessssessssessssessssesans
4.1.1. SampleCode
4.1.2. Tradeoffs............

R T = 1= 0 Tor 01 072

4.2. JAKAMAR COMPARED TO SIMILAR COMPONENTS.....ccecvvereeerererens
4.2.1. ObJectRelationalBridge
4.2.2. Benchmarks

4.3. CONCLUSION ...ooieeeeeeeeeeeeeeeeeeereeeeeeaeens
4.4. BENCHMARK INFORMATION..............

LS R 0100 017=L 0L OO
(010 N (o1 HLU 1S 10 [N 86
GLOSSARY et eeseeeseeese e sesese e sesese s s e se s e sese s se st se st s ee et ees st se et ee et see et s eeeeeeeeeeeeseeeeeeeneees 87
K OK KUY OTE ettt eeese s eese s seesesesesssesenesssesesesasesessesse e sessse e e sssesenesssesenessnesenesssesesessnesesessnesenssanenens 90
REFERENCES ...t teese s eese s eesesesesesesesesssesesesasesesssssesenesssesessssnesenssssesanssanesessssnesanssssesensssnesenssanesenes 92
AAPPENDICES ...ttt se et sesesesesesesssesesssesesesssesssesssssssesssesssesssesssesesessnesssessnesssessnessaesenessaessnessnessnessassene 94

9.1. APPENDIX A: CONFIGURATION FILE SYNTAX weteeeeeeeeeeeeereseeesssesssessssessssessssssssssessssssssssessssesssssssssessssessses A
0.2. APPENDIX B: SAMPLE CONFIGURATION. ...eeteeeeeeteeeeeeeeeeeeeaeeessaessaseesasssssasessasessassessssessassssssesssssessassesasesssssees 9
9.3. APPENDIX C: SAMPLE LOGGING CONFIGURATIONeeeeeeeeeeeeeeeeeaeessesessaeeessesesseseesaseessssessasessaseessssessns 100

1. Introduction

1.1. Background

A basic task for object-oriented software is producing, changing and viewing
persistent objects. Persistent objects are objects that exists beyond the lifetime of the
application; thisis typically achieved by storing their data in some kind of a data store.

The most common persistence mechanism at the moment is a relational database
management system [BibTecOl]. Relational databases are an efficient and proven
technology, they have widespread support in development languages and third party tools,
and people are familiar with them. However, several problems arise in a combination of
using an object-oriented language (like Java, SmallTak or C++) as the development
environment and a relational database as the persistence mechanism.

The greatest problem is getting locked into a proprietary technology. Although the
language for accessing relational databases - Structured Query Language (SQL) -
conforms to a standard, most database vendors add functionality to their product that
extends the syntax of the language. This additional functionality is useful and rewarding,
but produces a tight coupling between the database and the application. Should the
underlying database change, then this change cascades into the application domain as
well. For example, if the database management system is changed from Microsoft SQL
Server to Oracle, then most probably the persistence logic in the application (the code that
handles storing, deleting and retrieving persistent data) needs to be reworked to conform
to the syntax and ideology of Oracle.

Another problem is the impact of changes in data structure. If the class structure
changes in some way, then, besides the database, this triggers changes in the persistence
logic of the application as well. For example, if a field type is changed from integer to
floating-point value, then even this minor modification induces a change in the
persistence logic.

Final issue is not exactly a problem, but a point of concern nonetheless - the
persistence logic in applications could be automated. The principal difference between the

persistence logic of two applications is the exact structure of data, but the basic

persistence operations - like retrieving values from the database and setting them to
objects, and retrieving object field values and storing them in the database - are aike.

1.2.0bjective

This thesis offers a solution to these concerns. First, | introduce the Persistence
Broker design pattern for a reusable persistence layer that separates application logic
from persistence logic. The basic idea for such software was introduced in Scott W.
Ambler's whitepaper "Mapping Objects to Relational Databases’ [Ambl00a)].

Secondly, | present a component that | wrote as an implementation of such software -
the Jakamar object persistence layer. Jakamar, written in the Java programming language,
provides application objects with transparent persistence. With transparent persistence,
persistence of objects is provided automatically and the logic for performing persistence
operations is expressed in the Java language, without the client programmer needing to
know anything about databases and SQL. Jakamar encapsulates all the persistence logic
that an application needs, and gives access to persistence via simple operations like
store(object), delete(object), and retrieve(criteria).

Thirdly, I compare the benefits of using the Persistence Broker pattern with the basic
approach to persistence logic - embedding database access directly into the application
code - and judge the usefulness of the pattern. | also compare Jakamar with similar
publicly available Java software that at least in some terms follow the pattern and offer

similar functionality, and | judge the viability of Jakamar.

" A design pattern is a description of associated objects and classes that are customized to solve ageneral,
recurring design problem in a particular context [Gam95].

1.3. Thesis Composition

The thesis is divided into three main parts:

The Persistence Broker Pattern
Describes the problem domain and offers the solution. Using pattern notation has the
advantage of laying down the idea in a uniform clear-cut way that many developers are

familiar with. For information on patterns, see 1.4.1 Pattern Notation.

The Jakamar Object Persistence Layer
Describes the Jakamar object persistence layer, a component that follows the
Persistence Broker pattern. Gives an overview of its functionality, architecture, and other

aspects like security and configurability.

Benefits and Tradeoffs

Describes benefits and tradeoffs of a persistence broker instead of the basic approach
to persistence - embedding database access code directly in the application logic.
Describes also other components and frameworks that at least in some aspects follow the
Persistence Broker pattern. They are compared to Jakamar in terms of functionality and

performance.

1.4. Notation

14.1. Pattern Notation

The notation to describe the problem and the solution is pattern notation.

A design pattern is a description of associated objects and classes that are customized

to solve a general, recurring design problem in a particular context [Gam95]. Patterns

provide away to capture and reuse expertise.

The pattern notation used follows the AG Communication Systems Pattern Template

[AGCSL].

The following parts of a pattern definition might need some explanation:

Problem
Context

Forces

Solution

Resulting Context

Rationale

Gives a statement of the problem that this pattern resolves.
Describes the context where the problem is found.

Describes the forces influencing the problem and solution. Forces
basically elaborate the context. Forces can have positive and
negative effect.

Gives a statement of the solution to the problem.

Describes the context of the solution. Can include new problems
that appear as aresult of applying the pattern.

Explains the rational e behind the solution.

14.2. Diagram Notation

The notation used to mark up static and dynamic views of the system architecture -
class and interaction diagrams - is UML [UML97]. The definitions below have been taken

from the above reference.

a) Classes

A classisaset of objects that share the same attributes, operations, methods,
relationships, and semantics.

Aninterface specifies the externally visible behaviour of a class, or object, including
the signatures of the operations.

An abstract classis aclass that cannot be directly instantiated.

A concrete class is aclass that can be directly instantiated.

<<Interface>>
Interface AbstractClass ConcreteClass

Figure 1-1. Notations of an interface, an abstract class and a concrete class.

b) Class members

A member is a part of a type or class denoting either an attribute or an operation.
Square brackets ([]) for attribute type or operation parameter type denote an array.

An attribute is a named property of atype.

An operation is a service that can be requested from an object to effect behavior. An
operation has a signature, which may restrict the actual parameters that are possible.

A constructor can be regarded as a special operation that creates and returns a new

instance of the class. Constructors have the same name as the class.

Class

attribute : AttributeType
arrayOfObijects : Object[]

<<constructor>> Class()

<<constructor>> Class(argument : ArgumentType)
someOperation(argument : ArgumentType) : ReturnType
otherOperation()

Figure 1-2. Notation of class members.
c) Classrelationships

A rélationship is a semantic connection among model elements.

Generalization relationships
Generalization is the taxonomic relationship between a more general element and a

more specific element. The more specific element is fully consistent with the more
general element and contains additional information. An instance of the more specific
element may be used where the more general element is allowed.

Inheritance is the mechanism by which more specific elements incorporate structure
and behavior of more general elements related by behavior.

Interface inheritance is the inheritance of the interface of a more specific element.

Also known as the implements relationship.

<<Interface>>
Interface

[

ImplementingClass

Figure 1-3. Notation of theimplementsrelationship.

Implementation inheritance is the inheritance of the implementation of a more
specific element. Includes inheritance of the interface. Also known as the extends
relationship.

BaseClass <<Interface>>
Baselnterface

T

<<Interface>>
ExtendingClass ExtendingInterface

Figure 1-4. Notation of the extends relationship.

Association relationships
An association is a relationship that describes a set of semantic connections among a
tuple of objects. Both sides of an association can have roles that identify the purpose or

capacity wherein one class associates with another.

Class

+the role of Class

+the role of AssagciatedClass

AssociatedClass

Figure 1-5. Notation of the association.

An aggregation is a specia form of association that specifies a whole-part

relationship between the aggregate (whole) and a component part.

A compositionis aform of aggregation with strong ownership and coincident lifetime

as part of the whole. Parts with non-fixed multiplicity may be created after the composite
itself, but once created they live and die with it (i.e., they share lifetimes).

Class

1

n
CompositePartClass

Figure 1-6. Notation of t composition.

d)

Interaction diagrams

A sequence diagram is a graphical view of a scenario that shows object interaction in

atime-based sequence - what happens first, what happens next.

X

. Client

1l

: OneClass . AnotherClass . ThirdClass

: someMessage(argulnient : ArgumentType) : Return‘l;*ype

-
|
[}
I
I
I
1
[}
I
[l
[}
1

4

2: otherMessage() : ReturnType

3 stillOtherMessage(argument : ArgumentType)

Figure 1-7. Notation of a sequence diagram.

A collaboration diagram is a diagram that shows object interactions organized
around the objects and their links to each other. Unlike a sequence diagram a
collaboration diagram shows the relationships among the objects. Sequence diagrams and
collaboration diagrams express similar information, but show it in different ways.

1: someMessage(argument : ArgumentType) : ReturnType
—_—

: OneClass
: Client
2 otherMess$ge() - ReturnType
ThirdClass = AnotherClass

3: stillOtherMessage(argument : ArgumentType)

Figure 1-8. Notation of a collaboration diagram.

e) Activity diagrams

Anactivity diagram shows flow of control from activity to activity. An activity is an

ongoing non-atomic execution that results in some action

Swimlane A Swimlane B

[guard condition] / action

Consecutive
activit

Still another
activit

Initial activity
Final activity
state

Figure 1-9. Notation of an activity diagram.

2. ThePersstence Broker Pattern

Aliases. Persistence Manager.

2.1. Context

You are developing an application that needs to store the objects it works with. Most
probably, the persistence mechanism used is arelational database.
Example: a web-based book database, displaying the entered authors and their books,

and allowing the entry of new authors and books.

2.2. Problem

How to provide application objects with persistence, without hard-coding the system
to use a proprietary technology that can be subject to change? What solution would be

easily reusable in other applications?

2.3. Forces

The most commonly used persistence mechanism at the moment is a relationa
database management system [BibTec01].

Object databases are relatively new and uncommon, and do not have the support
relational databases have [BibTec01].

Every database vendor provides a dightly different syntax for functionality outside the
standard SQL, which gives greater power to the programmer, but enforces the use of a
proprietary technology.

Tailloring an application to a proprietary technology hinders portability, risks
endavement to the vendor and can cause great difficulties if the technology proves
insufficient for new requirements.

Embedding statements for data storage (e.g. SQL queries) in persistent classes is fast
both in performance and initial development, but hinders portability and forces

reworking of the classes in case of changes in the data structure. For example,

10

changing the field type of a class triggers a change of both the database and the
persistence logic. Or, a database table column's data type is changed from INTEGER
to BIT, but the object's field type remains a boolean.

Adding persistence into the classes themselves is not always possible - they might be
third party components.

Persistence methodology is often very similar across applications, differing only in the
exact data structure, which makes it a candidate for automation and reuse.

Developing a generic, reusable persistence mechanism takes a lot more time, effort

and skills than embedding an application-specific mechanism in the application.

2.4. Solution

Create a component that is able to provide application objects with persistence. The
component is not directly associated with the persistent classes and is therefore fully
reusable. Configuring the component to handle new persistent classes is dynamical, done
at runtime, from a configuration file. The component's functionality ejuals that of a
relational database, providing a query mechanism, relational integrity, and transaction
support, which are significant in many applications. The provided persistence is
transparent - the client programmers do not need to be aware how class instances are
made to persist, al the client programmer is aware of is that calling the methods of the
component - e.g. store, delete, and retrieve - provides access to persistence. Extending the
software to support other kinds of data stores besides relational databases should be
possible with no impact on existing code. Persistent classes need not be persistence aware,
i.e. they do not need to extend a certain class - accessing the object fields is done using
reflection .

Note that in case of a programming language that does not support reflection, it is
impossible to implement the solution in the current form. Languages that support
reflection include Java, C#, and Visua Basic. Languages that do not yet support reflection

include C, C++, and Delphi. In case of such languages, some workaround must be used -

" Reflection isthe process of inspecting a class for meta-information - information about its fields and
methods, calling methods, accessing fields dynamically, etc [McM97].

11

for example, developing a small adapter between the application and the component,
which is familiar with the application classes and knows how to interact with the
component.

Overview of the functionality of the Persistence Broker:

stores objects in the data store

deletes objects from the data store

retrieves objects from the data store, via potentially complex queries

supports referential integrity - when storing an object, its related objects will be stored

as well; when deleting an object, its related objects will be deleted with it

supports transactions

supports inheritance’

2.5. Resulting Context

Application programmer is not concerned with the specific persistence mechanism
used. He has been provided with an easily used, transparent persistence mechanism that
can be used with different databases. The problem of achieving object persistence, which
in some applications can comprise half of the total effort, has become a nonrissue. The
programmer can concentrate on other aspects of the application.

New problem: performance overhead. The persistence mechanism of the application
has become notably more complicated, adding at least one, possibly several layers of
logic between persistent classes and the data store. This incurs an additional hit on
performance. Besides, the reflection mechanism of the programming language can be
dow.

New problem: decrease in the functionality of the persistence mechanism. With

relational databases, the programmer can execute extremely complex queries just as

" Inheritance is an example of the object-relational mismatch[Ambl00a]. Persistent classes can inherit from
other persistent classes, extending them with new attributes. This inheritance needs to be supported in a
relational database as well. This can be implemented either storing the entire inheritance treein onetable,
storing each classin a separate table including all the attributes, or storing each classin a separate table
including only the attributes specific to that concrete class. When retrieving an object of a persistent class
that has persistent extensions, the extensions will have to be queried as well.

12

readily as simple storage and retrieval statements. With a persistence broker, other

workarounds must be used.

2.6. Rationale

By encapsulating persistence logic in a separate place and providing transparent
persistence, the application programmer need not concentrate on the specifics of one data
store, which should not be in the scope of most applications, but can instead concentrate
on the problems of the application domain.

Most of the databases available today offer additional functionality besides that
provided by the ANSI SQL standard. They provide row identification mechanisms,
special functions, triggers, and stored procedures, al of which are useful. But using them
in an application produces a tight coupling between the application and the database. If
the database is never changed during the lifetime of the application, then there is no
concern. If however, it happens that there is need to make the application use a different
database - e.g. the current one imposes some limits that have been finally reached, or the
software licence has expired and acquiring another licence from the same vendor is
unacceptable - then the application programmer is faced with a possibly huge task of
refactoring the application persistence mechanism. Utilizing a reusable component
capable of handling any kind of a database instead of making use of proprietary
technology, this domain of problems has become a total non-issue.

Now that the persistence broker is ready, it can and will be used in many applications.
The application programmer can utilize it without paying attention or even being aware of
whether the underlying data store is a database from the same vendor, from another
vendor, or an atogether different mechanism, like an XML file. If a minor change is made
in the underlying data store, the programmer need not change any part of the application
If a bigger change is made, then there is no persistence logic code to change, only the

persistence broker configuration file.

13

2.7. Known Uses

The general idea for a Persistence Broker-like architecture was introduced by Scott
W. Ambler [Ambl0O0b]. However, his work did not propose the broker in pattern form,
and specified the classes to be persistence aware.

ObJectRelational Bridge, an open source Object/Relational mapping tool, utilizes this
pattern (http://objectbridge.sourceforge.net/).

2.8. Example

2.8.1. Example Architecture

Two example architectures are given, one for an application that uses direct coupling

with the database, another for an application that uses a persistence broker.

Figure 2-1 shows the sample architecture for an application that has directly
embedded database access logic.

/1 sanple retrieval
Book book = null;

Connecti on connection =
Dri ver Manager . get Connect i on(
User "j dbc: odbc: books") ;
Vector authors = new Vector();
Interface ResultSet rs = connection
Classes .CreateStatenent ()
. execut eQuer y(
. "SELECT * FROM book id = 1241");
if (rs.next()) {
book = new Book();
book. setld(rs.getInt("id"));
book. set Titl e(
rs.getString("title"));
book. set Year (rs.getlnt("year"));
Database book. set Abst E act ? ¢y)

rs.getString("abstract));

Business
classes

Figure 2-1. Sample architecture of an application having directly embedded database access logic.

14

Figure 2-2 shows the sample architecture for an application that uses a persistence

broker.

User

Interface
Classes

Business
classes

Persistencew

/] sanple retrieval

Book exanpl e = new Book();

exanpl e. set1d(1234);

Query query = persistenceBroker
. creat eQuery(exanpl e);

Book real Book

= (Book) persi st enceBr oker

.retrieveQbj ect(query);

Broker

!

Database

Figure 2-2. Sample architecture of an application having directly embedded database access logic.

15

2.8.2.

Example Code

Two examples are given, one for an application that uses direct coupling with the

database, another for an application that uses a persistence broker.

Figure 2-3 contains the business classes of the application, Book and Author.

Book

id @ int

author : Author
title : String
year : int
abstract : String

Author

getld() : int

setld(id : int)

getAuthor() : Author
setAuthor(author : Author)
getTitle() : String
setTitle(title : String)
getYear() : int
setYear(year : int)
getAbstract() : String

setAbstract(abstract : String)

id :int
name : String
books : BookK]]

getld() : int

setld(id : int)
getName() : String
setName(name : String)
getBooks() : Book(]
addBook(book : Book)

Figure 2-3. Sample application classes that need persistence.

Figure 2-4 contains the database table diagram for the application.

book

id: int

author_id: int
author: varchar(20)

title: varchar(20)
year: int

Figure 2-4.

abstract: varchar(20)

author
id: int

<1 name: varchar(20)

Database table diagram for a sample application.

16

2.8.2.1. Direct Database Access

Sample code in Java using direct database access.

/1 An exanple that retrieves a set of Author instances fromthe database

/1 and prints them out
public class DatabaseTest ({
public static void main(String[] args) throws Exception {
/'l Create a connection to the database
Connection connection =
Dri ver Manager . get Connecti on("j dbc: odbc: books");
Vector authors = new Vector();
/'l Query the table author, where the nane contains 'donald
Result Set rs = connection.createStatenment (). executeQuery(
"SELECT * FROM aut hor WHERE nane = ' %lonal d% ") ;
while (rs.next()) {
Aut hor aut hor = new Author ();
author.setld(rs.getlnt("id"));
aut hor. set Nane(rs. get Nane(" nanme"));
/'l Query the table book for all the books of this author
Resul t Set subRs = statenent. execut eQuery(
"SELECT * FROM book WHERE author _id = " & author.getld());
while (subRs.next()) {
Book book = new Book();
book. set Aut hor (aut hor) ;
book. setld(subRs. getlInt("id"));
book.setTitl e(subRs. getString("title"));
book. set Year (subRs. getInt("year"));
book. set Abstract (subRs. get String("abstract));
aut hor . addBook(book) ;

aut hor s. add(aut hor);
}

connection. cl ose();

/'l Iterate over the retrieved authors and print them out

for (int i = 0; i < authors.size(); i++) {
Aut hor author = (Author)authors.get(i);
Systemout.println("Author: " + author.getName() + ". Books: ");

Book[] books = author. get Books();
/'l Iterate over the books of the author and print them out
for (int j = 0; j < books.length; i++) {
Systemout.println(" " + books[j].getNane() + ". Published in
+ books[j].getYear());

17

2.8.2.2. Using a Persistence Broker

Figure 2-5 contains the Persistence broker classes:

PersistenceBroker

Query

<<constructor>> PersistenceBroker(configurationFile : String)

addParameter(fieldName : String)

store(object : Object)

delete(object : Object)

retrieve(query : Query) : Vector
createQuery(exampleObject : Object) : Query

Figure 2-5. Sample classes for an interface to Persistence Broker.

Sample code in Java using a persistence broker.

/'l An exanple that retrieves a set of Author instances fromthe
/'l persistence broker and prints them out.
public class BrokerTest {
public static void main(String[] args) throws Exception {
/'l Construct the persistence broker froma configuration file
Per si st enceBr oker broker = new PersistenceBroker("conf.xm");
/1l Build the query and execute it
Aut hor exanple = new Author();
exanpl e. set Aut hor (" %donal d%') ;
Query query = broker.createQuery(exanple);
query. addPar anet er (" aut hor");
Vector authors = broker.retrieve(query);
/'l Iterate over the retrieved authors and print them out
for (int i = 0; i < authors.size(); i++) {
Aut hor author = (Author)authors.get(i);

Systemout.println("Author: " + author.getName() + ". Books: ");
Book[] books = author. get Books();
/'l lterate over the books of the author and print them out
for (int j = 0; j < books.length; i++) {
Systemout.printin(" " + books[j].getName() + ". Published in "
+ books[j].getYear());
}

As visible from the example above, using a Persistence Broker yields cleaner
application code, and forces no change in the persistence logic should the data structure
change, while using direct coupling with the database will bring about a change for every

small change.

18

3. TheJakamar Object Persistence Layer

3.1 I ntroduction

Jakamar is an object persistence layer that implements the Persistence Broker pattern.
It is a component that provides access the persistence via the simple PersistenceBroker
interface. Jakamar is not an independent application - its sole purpose is to be a reusable
software package that is utilized by other applications, being a building block that is used
for developing stand-alone applications.

Jakamar is implemented in Java. Forces for choosing Java as the implementation
language include:

Java has extensive API for database access (called JDBC).

Java is a common platform for server-side applications, which rely heavily on

databases and persistent data.

Javais platform independent.

Java supports reflection.

The author is intimately familiar with Java.

3.2 Functionality

Jakamar provides all of the functionality required of a persistence broker (see 2.4
Solution), except support for transactions and inheritance. These two aspects are intended
to be added during further development (see 3.11 Further Development).

Feature overview:

uses relational databases for data storage, automating object-relational mapping

" Itisacommon practise to give software products names that often are unrelated to the product domain.
For example, Ant isapopular Java compiling tool, and Tomcat is a Java web component container. |
encountered the name "jakamar" in Jules Verne'sMysterious Island - it referred to avery rare and beautiful
bird having a sharp long beak. It was edible, but no delicacy. | believe the Latin name for it isGalbula
viridis Lath, but | have found no authorative reference for this.

19

information about mapping Java classes onto underlying database tables is read from a
configuration file. The content of the configuration file is provided by the client
programmer.

stores objects in the data store

deletes objects from the data store

retrieves objects from the data store, via potentially complex retrieval criteria

can retrieve multiple objects with one operation

supports one-to-many relationships between classes - when retrieving an object, its
related objects can be retrieved automatically

supports referential integrity - when storing an object, its related objects will be stored
as well; when deleting an object, its related objects will be deleted with it

caches persistent objects, which can yield a dramatic increase in retrieval speed

can access multiple databases

persistent classes do not have to persistence aware, e.g. they do not have to inherit
from a specific class

supports composite identities

can perform any kind of conversion between object fields and table columns in both
types and values - for example, storing a string in the database, but a boolean in the
object (e.g. "male" and "female" in the database and isMale in the object)

custom SQL can be specified

The main interface of the component is the jakamar.PersistenceBroker interface.
Client programmers can obtain an instance of this interface by letting it to be created from
a configuration file that holds the information for mapping Java classes onto a data store.
For further information on configurability, see 3.10 Configuration.

Example places where Jakamar can be used:

web applications for information systems, which basically are database frontends and

therefore rely heavily on stored data

desktop applications, that need to store user preferences

applets for informations systems, acting as database frontends

20

any kind of application where there is need to persist objects in databases

Figure 3-1 presents the architecture of a sample application using Jakamar.

/| sanpl e storage
Book book = new Book();
book. set Aut hor (" Scott Meyers");

per si st enceBr oker. st or e(book) ;

/'l sanple retrieval

User Business Book exanpl e = new Book();
exanpl e. set1d(1234);

Interface classes .| Query query = persi st enceBr oker
Classes . creat eQuer y(exanpl e) ;

Book real Book

............... = persi st enceBr oker
""""""""""""""""" .retrieveQbj ect(query);

=1
g !
2 |
ersistence Layer . B L) > Database
NI
LI

Figure 3-1. Architecture of a sample application using Jakamar.

Jakamar has been designed with regard to future support for other data stores besides
relational databases. For example, if another package is provided that implements the
PersistenceBroker interface and uses XML files for data storage, then it can be integrated
seamlessly with the existing code. Nothing changes for the client programmer -

persistence brokers of different type will be obtained in exactly the same way.

3.2.1. Broker I nstantiation

The main interface that client programmers work with is PersistenceBroker.
Persistence brokers are created via a factory class and built from configuration files. If an
instance built from the specified configuration file is already available, the client
programmer is handed the existing instance.

An example of obtaining a PersistenceBroker instance:

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");

21

This approach has the benefit of supporting the seamless integration of new types of
persistence brokers discussed above, as the configuration file specifies what kind of a

persistence broker to use.

3.2.2. Storing an Object

Storing an object is very straightforward. The client programmer only needs to send a
message to the persistence broker and the object gets stored. If the object's identity is
unspecified - which is the case if the object has been transient so far - it is assigned a
unique identity. For more on object identities, see 3.3 Object Identities.

An example of storing an object:

/1l Obtain a Persistencebroker instance

Per si st enceBr oker broker = Persi stenceBrokerFactory.create("conf.xm");
/'l Create a new object and set sone of its attributes

Book book = new Book();

book.setTitle("Effective C++");

book. set Aut hor (" Scott Meyers");

/1 Store the object

br oker. st ore(book);

3.2.3. Deleting an Object

To be able to delete an object from the underlying data store, the only information
needed to know is its identity. For more on object identities, see 3.3 Object |dentities.
An example of deleting an object:

/1 Obtain a Persistencebroker instance
Per si st enceBr oker broker = Persi stenceBrokerFactory.create("conf.xm");
/1l Let the user input the identity of the Book to delete
Systemout.print("Enter the id of the Book to delete: ");
Buf f er edReader in

= new BufferedReader (new I nput St r eanReader (Systemin));
String input = in.readLine();
int id = Integer.parselnt(input);
/'l Create an exanple object and set its identity to that of
/'l the object to delete
Book book = new Book();
book. set 1 d(i d);
/'l Delete the object
br oker . del et e(book) ;

22

3.24. Retrieving Objects

Jakamar introduces the Query object - an object which represents query criteriaand is
used for object retrieval and criteria. The client programmer obtains an instance from the
persistence broker, is able to perform some additional operations on it (e.g. setting
parameters and ordering information), and gives the query to the persistence broker to be
executed.

There are three types of queries (in order of ascending complexity):

Query by identity

The criteria for selection is object identity. This query is used if the object identity is
known. A query by identity utilizes the object cache and can provide a remarkable
performance gain if the object has already been materialized - performing object retrieval
in practically zero time. This query retrieves at most one object. For more information on
object identities, see 3.3 Object Identities.

Example of use:

/1 Obtain a Persistencebroker instance

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
/'l Create the object with the identity

Book exanpl e = new Book();

exanpl e. set1d(2412);

/1 Create the Query instance

QueryByldentity query = broker.createQuery(exanple);

/1 Retrieve the result of the query

bj ect result = broker.retrieveObject(query);

23

Query by example

An example object is provided, with the fields that hold example values being
specified as parameter fields. Every object of this class that shares the same field valuesis
selected. As this query can retrieve multiple results, the results can be ordered on
specified attributes.

Example of use:

/1 Obtain a Persistencebroker instance

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
/'l Create the exanpl e object

Book exanpl e = new Book();

exanpl e. set Aut hor (" Bj arne Stroustrup");

String[] parans = {"author"};

/'l Create the Query instance

QueryByExanpl e query = broker.createQery(exanple, paranms, null);

/1 Order the results ascendingly by title and then descendingly by year
query.orderBy("title", false);

query.orderBy("year", false);

/1 Retrieve the results of the query

Col l ection results = broker.retrieveCollection(query);

Query by criteria

Allows the specification of complex and structured query criteria. Criteria can include
"less than", "not equal to", "greater or equal"” etc. As this query can retrieve multiple
results, the results can be ordered on specified attributes.

Example of use:

/1 Obtain a Persistencebroker instance

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
/1l Construct the criteria

Criteria criteria = new Criteria();

/1 The last argunment specifies whether the criterion is to be added

/1 to the rest of the criteria using AND or OR as the operator

criteria.add("author", "Janes Gosling", Criteria. EQUAL, false);
criteria.add("title", "%ava%, Criteria.LIKE, true);

Criteria subCriteria = new Criteria();

subCriteria.add("author", "Bjarne Stroustroup", Criteria. EQUAL, false);

subCriteria.add("title", "% ++%, Criteria.LIKE, true);
criteria.add(subCriteria, false);

/'l Order the results by author

OrderBy[] orderBys = {new OrderBy("author")};

/'l Create the Query instance. The query selects all Books that

/'l either have Bjarne Stroustroup as the author and "C++" as a substring
/1l in the title, or Janes Gosling as the author and "Java" as a

/1l substring in the title.

QueryByCriteria query = broker.createQuery("Book", criteria, orderBys);
/'l Retrieve the results of the query

Col lection results = broker.retrieveCollection(query);

24

3.3. Object Identities

An object identity (OID) is an identifier that, assigned to a persistent object, uniquely
identifies the object. In arelational database, tables have key columns. The values of the
key columns of a row make up the identity of a row. If objects, mapped to relational
databases, are to have identities, then these key columns (which usually have no business
meaning) must intrude into the object classes (where they normally are not present).
Classes are assigned attributes that map onto key columns in the database table.

The intrusion is necessary for creating relationships between objects. If a run-time a
persistent object has a reference to another persistent object, then when the objects are
made persistent, this reference needs to be stored, and the only way to do it isto via OIDs.
For example, a master class Person has a detail class Address, and a Person object can
contain several Address objects. When storing the Person object and its Address objects,
the OID of the Person object is stored as a foreign key in the database table the Address
class maps onto. When the Person object is materialized again, its Address objects are
also materialized by using the Person's OID.

Another use for OIDs in Jakamar is in caching - to cache an object, the object is
mapped to its OID, and cache lookup is performed using the OID. If the objects of a class
have no identity, then they cannot be cached and the performance gain from caching is
lost.

The OID class for object-relational persistence in Jakamar is the
jakamar .jdbc.Jdbcl dentity class.

3.3.1. I dentity Generation

New object identities are created when an object, that so far has been transient, is
stored. If an object has no identity set yet, a new unique identity is generated and assigned
to it.

Currently there are three identity generation strategies available in Jakamar. All these
generation strategies assume the key columns to be numerical. Arbitrary implementations,

however, are free to use columns of any type. For information on configuring the

25

persistence layer to use an arbitrary identity generator, see 3.10.5 Generating Object
[dentities.

Identity Generation from SELECT MAX

New valid values for key columns are obtained by performing a SELECT MAX
function on an integer column and incrementing the result. The advantage of this
approach is simplicity. The disadvantage is inefficiency - this demands a database access
call for every identity generated. Also, obtained key values are unique over the table only,
not the entire database.

The class jakamar .jdbc.ldentityGener ator FromSel ectMaxBuilder builds generators of

this type.

| dentity Generation from Counter

There is a table in the database that holds new valid values for key columns. The
table can have an additional column that specifies the name of the table the values are for.
The advantage of this approach is that key values can be unique over the entire database.
The disadvantage is inefficiency - this demands two database access cals for every
identity generated - one for selecting values, other for setting new values (which are
obtained by incrementing the selected values) that later calls can use. Also, the table can
become a performance bottleneck, asit is accessed for every identity generation.

The class jakamar.jdbc.ldentityGenerator FromCounter Builder builds generators of
this type.

| dentity Generation from High/Low [Ambl00g]

There is a table in the database that holds a range of new vaid vaues for key
columns. There are two values, HIGH and LOW, with HIGH specifying the starting value
of the range and LOW specifying the length of the range. For example, with HIGH being
10000 and LOW being 50, the values generated will fall into the range 10000 - 10049. If
the range is exhausted, two calls are made to the database - one for obtaining a new range
(which, if other applications have not updated the range, is 10050-10099), the other for

26

updating the range in the database for later calls (setting HIGH to 10100). The table can
have an additional column that specifies the name of the table the values are for.

The advantages of this approach are that key values can be unique over the entire
database, and that it is efficient - a database access call is needed only if the range has
been exhausted. The disadvantage of this approach is that as the range might not be
exhausted during the lifetime of the identity generator object, it leaves gaps in the
sequence of used values, thereby forcing possible values to run out faster. Where this
becomes a concern, setting a smaller value for LOW, with the tradeoff of poorer
performance, can mitigate it.

The class jakamar.jdbc.ldentityGenerator FromHighLowBuilder builds generators of

this type.

27

3.4. Object-Relational Mapping

The mapping of classes onto an underlying database is done using specific mapping
classes. There are three items that need mapping:

mapping the persistent classes themselves

mapping class attributes

mapping association rel ationships between classes

Mapping classes
Classes map onto tables, with one class per table. From Jakamar's point of view, there
is no difference between ordinary tables and view tables.

The class that embodies class mapping is jakamar .jdbc.JdbcClassMapping.

Mapping attributes
Class attributes map onto table columns, with one attribute per column. The class that

embodies class mapping is jakamar .jdbc.JdbcFiel dMapping.

Mapping relationships

Jakamar supports unidirectional relationships - relationships which can be traversed
in only one direction. In databases, relationships are implemented via primary and foreign
keys - one part in the relationship holds the primary key value of the related part in a
foreign key column. In the object realm, relationships are implemented as object
references - one object has a field which points to the related object (or an array field,
pointing to multiple related objects). When a persistence operation is performed with the
object the relationship starts in, the operation can also cascade over the relationship,
forcing the persistence layer to process the related objects as well. For example, if class
Person has a one-to-many relationship to class Address (Address objects belonging to a
Person), then deleting a Person object will force the deletion of the related Address
objects as well, thus maintaining relational integrity in the database. All persistence

operations - storing, deleting, retrieving - can be cascaded.

28

The class that embodies relationship mapping for object-relational persistence is
jakamar .jdbc.JdbcRel ationshipMapping.

3.5. Architecture

3.5.1. Conceptual View

Conceptua view gives an overview of the conceptual architecture of the system -
what basic parts it has and how do they interact.

29

Looking up
cached
instances Caghes
persistent
objects
Retrieving

Queries k N[l Identities

Applications oot Persistence

;

Broker

Persistent [~ Persistent
Objects Objects

;

Storing and deleting

Objects
Objects

/)
Queries Persistent Accesses
Objects object fields
dynamically
Deleting storage Persistent
and deletion / Objects
Persistent
Delegating queries ' Objects ‘
from the application Persistence . W
to lower level Mapping Reflection
‘ Field
mappings between [

classes and tables Field

Values

Field
Values
Returning the field

values for retrieved
objects

Field

1)

Specifying the Values

Specifying the
field values of
objects to store or
delete

criteria field values Query Mechanism

Handles executing
SQL statements

Database-specific
SQL queries

[|
SELECT ACTION Column
Queries JI Queries Values

>£ Conversion J

\

|
i[Resits

Converts object
field values to
table column

values and vice

versa

Database

Figure 3-2. Conceptual structure of Jakamar.

30

3.5.2. Static View

The static view models rel ationships between classes - inheritance and associations.
The persistence layer is divided into packages. Packages group classes by
commonality - for example package jakamar.mapping contains classes for mapping Java

classes onto a data store.

35.2.1. Package jakamar

Contains the classes that the user of Jakamar will probably work with. In this way,
Jakamar can be used with a single package import statement in code

(i mport jakakar.*;).

Criteria
Is used for creating detailed and structured query criteria, used in conjunction with
QueryByCiriteria. For an example of use, see 3.2.4 Retrieving Objects

Criterion
Represents a single criterion, part of a Criteria. This is used internally by Criteria to

represent all the selection conditions added to the object.

ConfigurationException
An exception thrown by PersistenceBroker Factory indicating that there was an error
when constructing a persistence broker from the configuration file - either the file could

not be accessed or it contained malformed syntax.
DataStoreException

An exception thrown by the persistence layer indicating that an error occurred while

accessing the data store. For example, the connection to the database was severed.

31

Identity
Represents an object identity. For further information on identities, see 3.3 Object

| dentities.

InvalidQueryException
An exception indicating that a query contains invalid syntax or values. For example,
if the client programmer has specified criteria for a field that does not exist or has no

persistence mapping.

NestedPer sistenceException
An exception containing a nested exception and indicating that an error has occurred
in the persistence layer. This exception is used to alow the client programmer access to

the original error encountered.

OrderBy
Represents ordering information for one query field. This is used internaly by
ordered queries (like QueryByExample and QueryByCriteria).

PersistenceBroker
The main interface of the persistence layer that client programmers work with.

Provides functionality for storing, retrieving and deleting persistent objects.
Per sistenceBroker Builder

Builds PersistenceBroker objects from the data fed to it by an instance of
j akamar . hel pers. Xnml Handl er . Thisis used internaly by the persistence layer.
Per sistenceBroker Factory

Creates and vends PersistenceBroker objects. This is the class client programmers use

to obtain an instance of PersistenceBroker.

Per sistenceException

32

An exception indicating that an error has occurred in the persistence layer. Thisis the

superclass for all persistence exceptions thrown by Jakamar.

Query
The basic Query interface for object retrieval. A generic query has basicaly no

behaviour, but is used as a concept.

QueryByCriteria
A query that has detailed criteria. For an example of use, see 3.2.4 Retrieving
Objects.

QueryByExample

A query that selects objects by example values. When using this query, an object is
provided, with fields set to desired values. For an example of use, see 3.2.4 Retrieving
Objects

QueryByldentity
A query that selects an object by its identity. This can be used if the identity of an
object is known. This query is probably faster than other queries, as it utilized the object

cache. For an example of use, see 3.2.4 Retrieving Objects.

33

PersistenceBrokerFactory

create(configurationFile : String) : PersistenceBroker
create(configurationFile : String, thread : Thread) : PersistenceBroker

createNew(configurationFile : String) : PersistenceBroker

<<Interface>>
PersistenceBrokerBuilder

startElement(name : String, value : String, atts : Map)
endElement(name : String)
getPersistenceBroker() : PersistenceBroker

<<Interface>>
PersistenceBroker

<<Interface>>
Identity

delete(object : Object)

store(object : Object)

retrieveObject(query : Query) : Object

retrieveCollection(query : Query) : Collection
retrieveCollection(query : Query, offset : int, count : int) : Collection
retrieveCount(query : Query) : int

isCacheEnabled() : boolean

setCacheEnabled(enabled : boolean)

createQueryByCriteria(className : String, criteria : Criteria, orderBys : OrderBy[]) : QueryByCriteria
createQueryByExample(example : Object, parameters : String[], orderBys : OrderBy[]) : QueryByExample

createQueryByldentity(objectWithldentity : Object) : QueryByldentity

getClassObject() : Class
getObject() : Object
setToObject(object : Object)

<<Interface>>
QueryByldentity

<<Interface>>
QueryByCriteria

<<Interface>>
QueryByExample

orderBy(fieldName : String) : QueryByExample
orderBy(fieldName : String, isAscending : boolean) : QueryByExample

<<Interface>>
Query

orderBy(fieldName : String) : QueryByCriteria
orderBy(fieldName : String, isAscending : boolean) : QueryByCriteria

compile()

Criteria

Criterion

Criteria()
add(criteria : Criteria, and : boolean) : Criteria

<<constructor>> Criterion(field : String, value : Object, type : int, isAndOperator : boole:
getField() : String
getType() : int

add(fieldName :
add(fieldName :
add(fieldName :
add(fieldName :
add(fieldName :
add(fieldName :
add(fieldName :
add(fieldName :
getAllCriteria() :
getCriteria() : Object[]
getValues() : Object[]

String, value :
String, value :
String, value :
: float, int : criterionType, and : boolean) : Criteria

String, value

String, value :
String, value :
String, value :
String, value :

Criterion[]

boolean, int : criterionType, and : boolean) : Criteria
char, int : criterionType, and : boolean) : Criteria
double, int : criterionType, and : boolean) : Criteria

int, int : criterionType, and : boolean) : Criteria
long, int : criterionType, and : boolean) : Criteria
Object, int : criterionType, and : boolean) : Criteria
String, int : criterionType, and : boolean) : Criteria

getValue() : Object
isAndOperator() : boolean

InvalidQueryException

<<constructor>> InvalidQueryException(message : String)

\/\

OrderBy

<<constructor>> OrderBy(fieldName : String)

getFieldName() : String
isAscending() : boolean

<<constructor>> OrderBy(fieldName : String, isAscending : boolean)

ClassNotPersistenceCapableException

<<constructor>> ClassNotPersistenceCapableException(message : String)

/\/

PersistenceException

<<constructor>> PersistenceException(message : String)

ConfigurationException

/\7

ﬁ\

NestedPersistenceException

<<constructor>> ConfigurationException()
<<constructor>> ConfigurationException()

<<constructor>> NestedPersistenceException(nestedException : Exception)
<<constructor>> NestedException(message : String, nestedException : Exception)

Figure 3-3. Package jakamar - classes and inheritance.

3522 Package jakamar.mapping
Contains interfaces for persistence mapping. These interfaces specify the behaviour
that persistence mappings for any kind of data store - not just the current implementation

on relational databases - will have to implement.

ClassMapping

Contains information for mapping a Java class onto a persistent data store.

FieldMapping

Contains information for mapping a Java class field onto a persistent data store.

OneToManyRelationshipMapping
Contains information for maintaining a unidirectional one-to-many relationship

between two classes.

OneToOneRel ationshipMapping
Contains information for maintaining a unidirectiona one-to-one relationship

between two classes.
RelationshipMapping

Contains information for maintaining a unidirectional relationship between two

classes, with acardinality of 1 on the master side.

35

<<Interface>>
RelationshipMapping

bindRelationship(master : Object, related : Object)
getCardinality() : int

getDetailObjects(master : Object) : Object[]
isDeleteCascaded() : boolean

isRetrieveCascaded() : boolean

isStoreCascaded() : boolean
updateBindingValues(master : Object, related : Object)

<} OneToManyRelationshipMapping

<<Interface>>

<<Interface>>
OneToOneRelationshipMapping

<<Interface>>
ClassMapping

createObject() : Object

getClassObject() : Class

getFactory() : ObjectFactory
getFieldMapping(fieldName : String) : FieldMapping
getFieldMappings() : FieldMapping([]
getFieldValue(object : Object, fieldName : String) : Object
getFieldValues(object : Object) : Object][]
getintrospector() : Objectintrospector
getRelationshipMappings() : RelationshipMapping[]
isCaching() : boolean

setCaching(enabled : boolean)

<<Interface>>
FieldMapping

getFieldObject() : Field

getValue(object : Object) : Object
isValueAssignable(object : Object) : boolean
setValue(object : Object, value : Object)

Figur e 3-4. Package jakamar.mapping - classes and inheritance.

36

3.5.2.3. Package jakamar.helpers

Contains classes that are used internally by the persistence layer.

Cache

Caches persistent objects. Caching can yield notable results in object retrieval speed.
This is provided as a pluggable interface - client programmers can configure the
persistence framework to use an arbitrary implementation, if the default implementation
provided by Jakamar is unsatisfactory. For further information on configuring, see 3.10

Configuration.

ClassMappingBroker
Vends ClassMapping objects. This is just a container for ClassMapping objects to
simplify the process of obtaining a class mapping for a specific class.

ErrorHandlingPolicy
Specifies an error handling policy to be used by the persistence layer. Top-level
classes in the persistence layer use an error handling policy that dictates the action taken

in case of an error. For further information, see 3.6 Error Handling.

FailFastErrorHandlingPolicy
An error handling policy with the ideology to fail quickly and cleanly.

ObjectFactory

Creates new objects. As persistent classes have to be instantiated dynamically, a
stand-alone class for instantiation is useful. This is provided as a pluggable interface -
client programmers can configure the persistence framework to use an arbitrary
implementation, if the default implementation provided by Jakamar is unsatisfactory. For

further information on configuring, see 3.10 Configuration.

37

Obj ectIntrospector

Provides access to object field values (inspecting and mutating the values). This is
provided as a pluggable interface - client programmers can configure the persistence
framework to use an arbitrary implementation, if the default implementation provided by

Jakamar is unsatisfactory. For further information on configuring, see 3.10 Configuration.

RobustErrorHandlingPolicy
An error handling policy with the ideology to never fail.

XmlHandler
Configuration file parser. This file is used internaly by the persistence layer (by
jakamar.PersistenceBrokerFactory) to parse configuration files and create persistence

broker.

38

<<Interface>>
Cache

<<Interface>>
ObjectFactory

cache(object : Object, id : Identity)
isEnabled() : boolean

lookup(id : Identity) : Object
remove(id : Identity)
setEnabled(enabled : boolean)

cache(object : Object, classMapping : ClassMapping) create(classObject : Class) : Object

create(className : String) : Object

RobustErrorHandlingPolicy

FailFastErrorHandlingPolicy

<<Interface>>

ErrorHandlingPolicy

handleException(caller : Object, exception : Exception, errorMessage : String) : int

<<Interface>>
Obijectintrospector

getFieldValue(object : Object, field : Field) : Object

setFieldValue(object : Object, field : Field, value : Object)

isValueAssignable(field : Field, value : Object) : boolean

addToArrayField(object : Object, field : Field, element : Object)

addToCollectionField(object : Object, field : Field, element : Object, collectionClass : String)

<<Interface>>
IdentityFactory

create(classMapping : ClassMapping, object : Object) : Identity
createNew(classMapping : ClassMapping) : Identity

ClassMappingBroker

XmlHandler

<<constructor>> ClassMappingBroker()
add(classMapping : ClassMapping)

get(classObject : Class) : ClassMapping
get(className : String) : ClassMapping

<<constructor>> XmlHandler()
getException() : Exception
getPersistenceBroker() : PersistenceBroker

Figure 3-4. Package jakamar.helpers - classes and inheritance.

39

3.5.24. Package jakamar.jdbc

Contains an implementation of the persistence broker using relational databases as
the data store.

As the classes in this package are quite numerous, they are divided into subdiagrams
by commonality. If a class inherits from a class outside the jakamar.jdbc package, the
package and the class have been imported onto the diagram.

Figure 3-5 contains the query classes for package jakamar.jdbc.

JdbcQuery
The JDBC query interface. This specifies the behaviour that all query classes of this
package must follow, like returning an SQL WHERE statement.

JdbcQueryByCriteria
The JDBC implementation of jakamar.QueryByCriteria.

JdbcQueryByExample
The JDBC implementation of jakamar.QueryByExample.

JdbcQueryByldentity
The JDBC implementation of jakamar.QueryByldentity.

40

<<Interface>>
JdbcQuery

getClassMapping() : JdbcClassMapping
getOrderBys[]() : OrderBy[]
getParameterFieldMappings() : JdbcFieldMapping(]
getParameterValues() : Object[]
getWhere(sglGenerator : SqlGenerator) : String

<7

/
/
/
/
-

N

JdbcQueryByExample

<<constructor>> JdbcQueryByExample()

JdbcQueryByldentity

<<constructor>> JdbcQueryByldentity()

JdbcQueryByCriteria

<<constructor>> JdbcQueryByCriteria()

V

jakamar

V

V

<<Interface>>
QueryByExample

<<Interface>> <<Interface>>
QueryByldentity QueryByCriteria

v

s

Query

<<Interface>>

<—

Figure 3-5. Package jakamar.jdbc - query classes and inheritance.

41

Figure 3-6 contains the classes that provide the mapping between Java classes and
database tables. The key class is JdbcClassMapping - it contains JdbcFieldMapping and
JdbcRelationshipMapping objects, has a reference to the Table its class maps onto, and to
the Database the Table lies in.

Column
Holds information about a database table column. This information is used when

creating SQL statements, and setting and getting column values from the database.

Database
Holds information about a database, and contains the Table objects for the tables of
this database.

JdbcClassMapping
Contains information for mapping a Java class onto an underlying database table.

Every class mapping refers to a Table object.

JdbcFieldMapping
Contains information for mapping a Java class field onto an underlying database table

column. Every field mapping refers to a Column object.

JdbcOneToManyRel ationshipMapping
The JIDBC implementation of jakamar.mapping.OneT oM anyRelationshipMapping.

JdbcOneToOneRel ationshipMapping
The JDBC implementation of jakamar.mapping.OneToOneRel ationshi pM apping.

JdbcRel ationshipMapping

42

The JDBC interface of jakamar.mapping.RelationshipMapping. Specifies the
behaviour that the relationship mappings of this package must implement, like creating a
query that retrieves the related objects of a master object.

Table

Holds information about a database table, and contains the Column objects for the

columns of thistable.

43

Column

Column(name : String, type : int, isPrimaryKey : boolean)
getName() : String

getType() : int

isPrimaryKey() : boolean

Table

Database

<<constructor>> Table(name : String, schema : String, database : Database)
addColumn(column : Column)

getColumn(name : String) : Column

getDatabase() : Database

getName() : String

getSchema() : String

<<constructor>> Database(url : String, driver : String, generator : SqlGenerator)
addTable(table : Table)

getDriver() : String

getPassword() : String

getSqlGenerator() : SqlGenerator

getTable(name : String) : Table

getUrl() : String

getUsername() : String

setPassword(password : String)

setUsername(username : String)

JdbcClassMapping

getAdapter(fieldMapping : JdbcFieldMapping) : ObjectToJdbcAdapter
getDatabase() : Database

getKeyFieldMappings() : JdbcFieldMapping[]
getKeyFieldValues(object : Object) : Object][]
getNonKeyFieldMappings() : JdbcFieldMapping[]
getNonKeyFieldValues(object : Object) : Object[]
getTable() : Table

setAdapter(adapter : ObjectToJdbcAdapter)
setDatabase(database : Database)
setFactory(factory : ObjectFactory)
setintrospector(introspector : Objectintrospector)
setKeyFieldValues(object : Object, values : Object[])

7
-
s
-

JdbcOneToManyRelationshipMapping

JdbcFieldMapping

getAdapter() : ObjectToJdbcAdapter
getColumn() : Column

getindex() : int

setAdapter(adapter : ObjectToJdbcAdapter)
setColumn(column : Column)

setindex(index : int)
setIntrospector(introspector : Objectintrospector)

JdbcOneToOneRelationshipMapping

<<Interface>>
JdbcRelationshipMapping

addBinding(master : JdbcFieldMapping, detail : JdbcFieldMapping)
createBindingQuery(master : Object, queryFactory : QueryFactory) : JdbcQuery

v

jakamarimapping

V

<<Interface>>
OneToManyRelationshipMapping

<<Interface>>
RelationshipMapping

—>

<+ OneToOneRelationshipMapping

<<Interface>>
ClassMapping

>

V

<<Interface>>

<<Interface>>
FieldMapping (< }------4--------

Figure 3-6. Package jakamar .jdbc - persistence mapping classes and inheritance.

Figure 3-7 contains classes that are close to persistence broker.

DbAccess
Handles all database access and persistence operations. The JdbcPersistenceBroker
classis basically a front-end for this that wraps the PersistenceBroker interface around the

class and provides support for caching and relationships.

| dentityGener ator

Generates new unique object identities. Instances of this interface are used by
JdbcldentityFactory to create new unique object identities. For further information on
object identities, see 3.3 Object Identities.

| dentityGener ator Builder

The interface that specifies the behaviour of all IdentityGenerator builders. This class
and its implementations are used only when building a persistence broker from a
configuration file. For further information on object identities, see 3.3.1 Identity

Generation.

| dentityGener ator FromCounter Builder
Builds identity generators that generate new unique identities by looking up the

counter values from a special key-values table and incrementing the counter.

| dentityGenerator FromHighLowBuilder
Builds identity generators that generate new unique identities by looking up the range
of possible key values from a specia key-values table and using items from the range as

new identity values.
| dentityGener ator FromSel ectMaxBuilder

Builds identity generators that generate new unique identities by selecting the

maximum values of the primary key columns and incrementing them by one.

45

Jdbcldentity
Represents the identity of a object mapped onto a database table.

JdbcldentityFactory

Creates identities for persistent classes.

JdbcPer sistenceBroker

The JDBC implementation of jakamar.PersistenceBroker. This class acts as a wrapper
around the DDbAccess class, providing additional functionality of caching and class
relationships.

JdbcPersistenceBroker Builder
Builds JdbcPersistenceBroker objects. When building a persistence broker of this
package, an instance of this class is created by jakamar.helpers. XmlHandler and data from

the configuration file is delivered forward to the builder that knows what to do with it.

46

]

jakamar jakamar.helpers
<<Interface>> <<Interface>>
PersistenceBroker PersistenceBrokerBuilder <<Interface>>
IdentityFactory

JdbcPersistenceBroker

<<Interface>>
IdentityGenerator

JdbcPersistenceBrokerBuilder

generate(classMapping : JdbcClassMapping) : Jdbcldentity
<<constructor>> JdbcPersistenceBrokerBuilder() setDbAccess(dbAccess : DbAccess)

<<Interface>> JdbcldentityFactory
Jdbcldentity

getClassMapping() : JdbcClassMapping
getKeyValues() : Object[]

<<constructor>> JdbcldentityFactory()

QueryFactory

<<const

createByCriteria(classMapping : JdbcClassMapping, criteria : Criteria, orderBys : OrderBy[]) : JdbcQueryByCriteria
createByExample(classMapping : JdbcClassMapping, example : Object, params : String[], orderBys : OrderBy[]) : JdbcQueryByExample
createByldentity(classMapping : JdbcClassMapping, identity : Jdbcldentity) : JdbcQueryByldentity

createByldentity(classMapping : JdbcClassMapping, object : Object) : JdbcQueryByldentity

setErrorHandlingPolicy(policy : ErrorHandlingPolicy)

ructor>> QueryFactory(identityFactory : JdbcldentityFactory)

<<Interface>>

IdentityGeneratorBuilder

IdentityGeneratorFromSelectMaxBuilder

endElement(name : String) <}
getBuiltObject() : IdentityGenerator
startElement(name : String, value : String, atts : Map)

<<constructor>> IdentityGeneratorFromSelectMaxBuilder()

A Y

IdentityGeneratorFromCounterBuilder IdentityGeneratorFromHighLowBuilder

<<constructor>> ldentityGeneratorFromCounterBuilder()

<<constructor>> ldentityGeneratorFromHighLowBuilder()

DbAccess

insert(classMapping : JdbcClassMapping, object : Object)

update(classMapping : JdbcClassMapping, object : Object)

delete(classMapping : JdbcClassMapping, id : Identity)

delete(classMapping : JdbcClassMapping, query : Query)

retrieveCollection(classMapping : JdbcClassMapping, query : Query) : Collection
retrieveCollection(classMapping : JdbcClassMapping, query : Query, offset : int, count : int) : Collection
retrieveCount(classMapping : Jd, query : Query) : int

getFieldFromResultSet(rs : ResultSet, index : int, classMapping : JdbcClassMapping, fieldMapping : JdbcFieldMapping) : Object
getldentityFromResultSet(rs : ResultSet, classMapping : JdbcClassMapping) : Jdbcldentity
retrieveObject(classMapping : JdbcClassMapping, id : Jdbcldentity) : Object
retrieveObject(classMapping : JdbcClassMapping, query : Query)

getObjectFromResultSet(rs : ResultSet, classMapping : JdbcClassMapping) : Object

Figure 3-7. Package jakamar .jdbc - classes and inheritance close to JdbcPersistenceBroker.

47

Figure 3-8 contains the rest of the classes in the jakamar.jdbc package. These classes
mostly deal directly with SQL and JBDC.

ClassSatementFactory
Constructs executable SQL statements for an individua class - statements returned by

this class operate on one table and provide objects belonging to a certain class.

ConnectionManager
Manages database connections - hands out a connection to a specified database and

expects the connection to be returned to be able to reuse it. Uses a pool of connections.

ObjectToJdbcAdapter

Provides persistent objects access to the JDBC storage and retrieval interfaces. Acts
as an adapter between Java class fields and database table columns - it can be used for
obtaining a value from the database that is fit to be set to an object field, and is able to
insert the value of an object field into an SQL statement. This is a pluggable interface -
client programmers can configure the persistence layer to use an arbitraty implementation,
if the default implementation provided by Jakamar is unsatisfactory. For further

information, see 3.10.1 Column-to-Field Conversions.

Syl Generator

Generates SQL syntax. All the SQL created for persistence operations comes from an
SQL generator. |s Database-specific - every Database has an SQL generator instance. This
is a pluggable interface - client programmers can configure the persistence layer to use an
arbitrary implementation, if the default implementation provided by Jakamar is
unsatisfactory. For further information, see 3.10.4 Special SQL Syntax.

SatementFactory

Factory class for creating executable Statement objects. It delegates all creation
messages on to the suitable ClassStatementFactory object. This class is used by DbAccess

48

and acts as a convenient container for the possibly numerous ClassStatementFactory
objects.

ConnectionManager

<<constructor>> ConnectionManager()
getConnection(database : Database) : Connection
freeConnection(connection : Connection, database : Database)

<<Interface>>
SqlGenerator

createlnsert(classMapping : JdbcClassMapping) : String
createDelete(classMapping : JdbcClassMapping) : String
createSelect(classMapping : JdbcClassMapping) : String
createSelect(query : JdbcQuery) : String
createSelectCount(query : JdbcQuery) : String
createUpdate(classMapping : JdbcClassMapping) : String

StatementFactory

<<constructor>> StatementFactory(connectionManager : ConnectionManager)
createDeleteStatement(classMapping : JdbcClassMapping, identity : Jdbcldentity) : PreparedStatement
createDeleteStatement(classMapping : JdbcClassMapping, query : Query) : PreparedStatement
createlnsertStatement(classMapping : JdbcClassMapping, object : Object) : PreparedStatement
createSelectCountStatement(classMapping : JdbcClassMapping, query : Query) : PreparedStatement
createSelectStatement(classMapping : JdbcClassMapping, identity : Jdbcldentity) : PreparedStatement
createSelectStatement(classMapping : JdbcClassMapping, query : Query) : PreparedStatement
createUpdateStatement(classMapping : JdbcClassMapping, object : Object) : PreparedStatement
freeStatement(classMapping : JdbcClassMapping, stmt : PreparedStatement)
getClassStatementFactory(classMapping : JdbcClassMapping) : ClassStatementFactory

ClassStatementFactory

<<constructor>> ClassStatementFactory(classMapping : JdbcClassMapping, connectionManager : ConnectionManager)
createDeleteStatement(identity : Jdbcldentity) : PreparedStatement
createDeleteStatement(query : Query) : PreparedStatement
createlnsertStatement(object : Object) : PreparedStatement
createSelectCountStatement(query : Query) : PreparedStatement
createSelectStatement(identity : Jdbcldentity) : PreparedStatement
createSelectStatement(query : Query) : PreparedStatement
createUpdateStatement(object : Object) : PreparedStatement
freeConnection(connection : Connection)

freeStatement(stmt : PreparedStatement)

getConnection() : Connection

<<Interface>>
ObjectToJdbcAdapter

get(rs : ResultSet, index : int, fieldMapping : JdbcFieldMapping) : Object
set(stmt : PreparedStatement, index : int, value : Object, fieldMapping : JdbcFieldMapping)

Figur e 3-8. Package jakamar .jdbc - classes and inheritance close to the JDBC framework.

49

3.5.25. Associations
jakamar.jdbc
<<Interface>>
+has | Database
<<Interface>> . <<Interface>> SqlGenerator
IdentityGeneratorBuilder [touilds IdentityGenerator 1
+is built by +contains
nTib used by
ClassStatementFactory | ConnectionManager n
Table
T 1 [+uses —
n L#hasa | 400 1dentityFactory I[¥contains
DbAgcess
n
+has? Column
+uses | 1 1 1 <<Interface>>
StatementFactory JdbcRelationshipMapping
+hasja
1 +uses a " l+has n ruses
+has g ; +has a
QueryFactory ~ - dbcPersistenceBroker ; +u / T SdboFieldMapping
1 JdbcClassMapping [—Thas
/ n +uses
+build 1
JdbcPersi BrokerBuild +m <<Interface>>
cPersistenceBrokerBuilder hass a n ObjectToJtbcAdapter
tuses a
US&puses

]

jakamar

Jorantac

1

Torcatc s

PersistenceBrokerFactory

AN

-\ N\

1 +vends

jakamar.hélpers

ClassMappingBroker

<<Interface>>
Objectintrospector

<¥|nterface>> \ql
ErrorHandlingPolicy
<<Interface>>|
Qﬁ \Ll 1Ses Cache
< xmiHander

\

<<Interface>>
ObjectFactory

Figure 3-9. Association relationships between classes across the jakamar packages.

50

3.5.3. Dynamic View

The dynamic view models the interaction between class instances, marked up with

sequence and collaboration diagrams. The main system operations - storing, deleting and

retrieving - are modelled.

For every operation, there is a contract , an activity diagram that shows the abstract

idea behind the nested operations, and an interaction diagram that shows the

communication between the classes of Jakamar.

353.1L Storage

Contract

Responsibilities Stores the specified object in the database.

Outputs -
Preconditions - Object's class has persistence mapping
Postconditions - if the object had no identity, it was assigned a new identity

the object was stored in the database
if the object had related objects, and the relationship cascaded
over storage, the related objects were stored

51

Figure 3-10 shows the abstract action taken in during storing.

Client Persistence layer

[object has relations] / for every related object, repeat the action

< Delete object > ACreate an SQL DELETE statement

from the persistence mapping

SOL statement as deletion criteria (e.qg. "WHERE id = ...

< Execute the SQL > ‘
statement

(Get identity values from the object and set them to the)

Figure 3-10. Abstract action taken during storing an object.

52

x

: Client

| store(object)

Figure 3-11 shows the concrete action taken if the object is aready persistent and needs to be updated in the database.

JdbcPersist_enceBroker

: DbAccess

StatementFactory

ClassStatementFactory

ConnectionManager

: SqglGenerator

Ob'ectToJEbcAdapter

update(classMapping, Ibbjec’()

createUpdateSt te'ment(classMapping, objectj
createUpdateStateme

abje

ct
ge?Connection(dataQase)

createUpdate(¢!

ssMapping)

set(stmt,lindex, value, fieldMa|

freeConnection(conge

freeStatement(clag

v

R |

If the object had
related objects, then
duplicate the
storage operation for
every object after
reclaiming control

]

sMapping, stmt)

Figure 3-11. Concrete action taken during updating an object in the database.

|The UPDATE
statement is

executed before
calling this

btion, database)

~~
~ae

S~
~~o

S~
~ao

field

Tset the value for
every persistent

R

X

: Client

Figure 3-12 shows the concrete action taken if the object has been transient so far and needs an identity before being inserted into
the database.

JdbcPersistenceBroker

: DbAccess

JdbcldeanFactou

StatemeFtFactou

CIassStaterentFactor_\L

Connectio_nManager

: SalGenerator

Ob’ectTonébcAdggter

. 1 !
store(object) i insert(classMapping, ob|

L
:
[l
[}
1
I
1
1
[}
1

1
gzateNew(classMapping)i

createlnsel

freeStatement(cl.

Create a new
unique identity
and set it to
the object

pping, stmt)

Figure 3-12. Concrete action taken during inserting an object in the database.

itStatement(classMapping, objecu>
createlnsenswtement(ogef

1)

getConnection(database;

createlnsert(cl !JsMapping)

set(str

it, index, value, fieldMappir

freeConnection(conned

ftion, database)

The INSERT
|| statement is

executed before
calling this

Set the value for N

every persistent
field

3.5.3.2 Deletion

Contract
Responsibilities Deletes the specified object from the database.
Outputs -

Preconditions

Postconditions

object's class has persistence mapping

if the object had related objects, and the relationship cascaded
over deletion, the related objects were deleted

the specified object was deleted from the database

Figure 3-13 shows the abstract action taken during object deletion.

Client

Persistence layer

[object has relations] / for every related object, repeat the actiof]

< Delete object >

A Create an SQL DELETE statement
_from the persistence mappin

Get identity values from the object and set them to the SQL
statement as deletion criteria (e.g. "WHERE id = 32323")

< Execute the SQL \

statement

@

Figure 3-13. Abstract gction taken during object deletion.

95

Figure 3-14 shows the concrete action taken during object deletion.

. cli : Cache : DbAccess o - : SalGenerator
- Client StatementFactory ConnectionManager

JdbcPersisEnceBroker CIassState;entFactory Ob'ectToJFbcAdapter

| delete(object) ! remove(id) !

|

delete(classMapping. ob createDeleteStatement(classMapping, object)

createDelete Statement(object)
getConmection(database)

(e}
Q

bateDelete(classMapping)

set(stt, index, value, fieldMapping)

Set|the identity
values as deletion

freeConnection(connection, database) critetia

freeStatement(clagsMapping, stmt)
~~~~~~~ ] The DELETE
------------ statement is

," executed before

: / calling this
L | If the object had

L] related objects, the
duplicate the
deletion operation
for every object afte
reclaiming control

=

N |
S |

Figure 3-14. Concrete action taken during object deletion.
5A



3.5.3.3. Retrieval
Contract
Responsibilities  Retrieves objects corresponding to the specified query criteriafrom
the database.
Outputs retrieved objects

Preconditions

Postconditions

objects corresponding to the specified criteria were retrieved from
the database

if the class of the objects had a relationship with another class,
and the relationship cascaded over retrieval, then the related

objects were retrieved as well and set to the referencing object

Figure 3-15 shows

Client

the abstract action taken during collection retrieval.

Persistence layer

[ the class has relationships ] / for every relationship, create a binding

Retrieve
objects

<Receive retrieved ) =
objects

\/ Create an SQL >

“_ statement for the query
(Fill in SQL parameters >
from the query
Execute SQL
statement

[ repeat until results exhausted ]

Instantiate the
persistent class

Get column values from the results \
and set them to object fields ~ /

Figure 3-15. Abstract action taken during collection retrieval.

57

juery




Figure 3-16 shows the concrete action taken during collection retrieval.

1: retrieveCollection(query)

14: createBindingQuery(master, queryFactory)
: JdbcRelationshipMapping

==

JdbcPersistenceBroker

If the retrieved class has
related classes, then for every
retrieved object a query is
constructed that retrieves the
related objects of that object,
and action 2 is re-executed
with this query.

AN

:Client T T~ T
2: retrieveCoIIecti%/n(classMapping, quer %e(omech classMapping)
10: lookup(id)
: : DbAccess —> - Cache
StatementFactory - N
3: createSelectStatement(classMapping, query \\\
9: freeStatement(classMapping, stmt) \\
4: createSeIe&/tStatement(query) \‘\\
e(className) S

7: set(stmt, index, value, fieldMapping) E

: ClassStatementFactory : ObjectToJdbcAdapter

!

ateSelect(query)

: ObjectFactory

5: getConnection(database)

nection(connection, database) 1. setFieldVaue(object, field, value)

6: cre

: SglGenerator : Objectintrospector

ConnectionManager

Figure 3-16. Concrete action taken during collection retrieval.

~JIf the object was found in AN

the cache, then actions
11-12 are skipped, as
the existing object will
be used instead.

This action is repeated
for every row read from
the SQL query results




3.6. Error Handling

The persistence layer is quite paranoid in its regard to possible errors. All method
arguments are meticulously examined for validity, even among the internal classes.

The main error handling ideology throughout the persistence layer is that error
handling is fail-fast - that is, in case of an error, the application fails quickly and cleanly.
The reasoning behind this is that most of the likely errors encountered are not transient
errors (for example, data store connection failures), but rather flaws in the persistence
layer configuration. Such errors need to be flushed out as quickly as possible.

However, it is possible to configure the persistence layer with an arbitrary error
handling  policy, with a custom implementation of the interface
jakamar.helpers.ErrorHandlingPolicy. There are several implementations readily

available in the persistence layer:

FailFastErrorHandlingPolicy
The default error handling policy used by the persistence layer. The ideology is to
fail quickly and cleanly in case of any errors.

RobustErrorHandlingPolicy
A robust error handling policy that swallows all encountered errors, passing no
errors to the client.

In addition, clients can specify an arbitrary implementation.

59



3.6.1.

Probable Encountered Errors

Error Details

null asa
method

argument

Time and place
Details

Reaction

at any time, in al places

Most of the methods do not accept null as avalid
argument.

NullPointer Exception is thrown, if the used error
handling policy does not specify otherwise.

configuration
file access
failure

Time and place

Details

Reaction

creation of a PersistenceBroker, in
PersistenceBroker Factory

Configuration cannot be read from the
configuration file, either because the file is not
accessible, or an 1/0O error occurs while reading the
file.

ConfigurationException is thrown.

configuration

Time and place

creation of a PersistenceBroker, in

Details

Reaction

error Per sistenceBroker Factory
Details The configuration isinvalid. For example, required
elements are not present, or dataisin invalid range.
Reaction ConfigurationException is thrown.
connection Timeand place | performing persistence operations, in
failure JdbcPersistenceBroker

Attempt to connect to the database failed, or attempt
to use an established connection failed.
DataStoreException is thrown, if the used error

handling policy does not specify otherwise.

60




data store

error

Time and place

Details

Reaction

performing persistence operations, in

JdbcPer sistenceBroker

An error occurs in the database, most probably
caused by invalid data, violating referential integrity
or accessing locked records. Occurrence of this
error most likely indicates invalid configuration,
either of the persistence layer of of the database.
DataStoreException is thrown, if the used error

handling policy does not specify otherwise.

reflection error

Time and place

Details

Reaction

performing persistence operations, in

JdbcPer sistenceBroker

An error occurs when manipulating field data via
Java reflection. Can be caused by trying to set an
invalid value to afield, indicating either a flawed
configuration or need for a custom
ObjectToJdbcAdapter. Another possible causeis
reflection restriction. By default, field manipulation
has no restrictions, but a custom SecurityManager
may have been set to the application.
PersistenceException is thrown, if the used error

handling policy does not specify otherwise.

transient
object as an

argument

Time and place

Details

Reaction

performing persistence operations, in

JdbcPer sistenceBroker

The class of the object has no persistence mapping
and therefore cannot be handled by the persistence
layer.

ClassNotPer sistenceCapabl eException is thrown, if
the used error handling policy does not specify

otherwise.

61




Error Details

query Timeand place | performing queries, in JdbcPersistenceBroker
verification Details The query cannot be compiled because of illegal
error settings. For example, afield to order the results by
has no persistence mapping.
Reaction InvalidQueryException is thrown, if the used error

handling policy does not specify otherwise.

illegal range Timeand place | performing retrieval of multiple objects, in
of retrieva JdbcPer sistenceBroker

retrieveCollection(Query query, int offset, int
count)
Details The specified range of objects to return from the
query resultsis not valid - the offset is negative, or
the count is less than -1.
Reaction IndexOutOfBoundsException is thrown, if the used
error handling policy does not specify otherwise.

62



3.7. Security

In a Java application, security must be considered from three different contexts:

virtual machine security, application security and network security [SundO1].

3.7.1. Virtual Machine Security

Virtual machine security is mostly concerned with the introduction of unverified byte
code (allowing unsafe or illegal code to run), and with the subversion of the Java type
system (allowing to manipulate an object in ways the author never intended;
accomplished by using unverified code).

By default, the VM does not run unverified byte code. The verification can be turned
off by the user, though. If there is a concern that the virtual machine could be attacked,
verification should not be disabled.

3.7.2. Application Security

Application security is by far the largest security domain, concerned with the problem
areas, shortcomings and flaws of design and implementation. Here the focus is laid on

problem areas in application security.

3.7.2.1. Tracking Operations

Problem

The history of potentially sensitive operations must be accessible.
Assessment

Situations can arise where information has mysteriously been changed or deleted,
and it is important to know when it happened and what the previous data looked like.
Solution

Enable adeguate logging in the persistence layer. See 3.9 Logging.

63



3.7.2.2. Consuming Unreasonable Amounts of Resources

Problem

The persistence layer could use up too many system resources.
Assessment

The persistence layer in a newly initialized state holds only mapping information,
constructed from the configuration file. Additional work objects (like statement
factories for individual classes) are initialized on demand.

Database connections are also created on demand. They are not closed over the
life of the application, as creating a connection is a time-costly operation. Persistent
objects are cached, to speed up object retrieval. The cache uses soft references that are
garbage-collected in response to a memory demand.

To conclude: as the persistence layer uses lazy initialization wherever possible to
avoid unnecessary resource allocation, and keeps no objects that are not needed,
memory is used in reasonable amounts. If the memory footprint is still too large,
object caching can be disabled.

3.7.2.3. Confidentiality of Authentication Data and Persistent Data

Problem

The authentication information of the data store (e.g. username and password for
connecting to the database) is stored in the configuration file. If the application
launched by a malicious user has access to this file, or if the malicious user can access
this information directly, then the authentication information is compromised, and the
malicious user can steal, alter and destroy persistent data
Assessment

This concern usually arises if the application is a web application, for example a
servlet, that by default is not run with the access rights of the user and thus the
configuration file must have more liberal access rights.
If no solution is used, then harmful activity on persistent data is at least detectable if
adequate logging is enabled (see 3.9 Logging).



Solutions
The configuration file can aso be a URL. Limit the access to the URL (e.g. by
setting a password in the web server and providing the access information inside
the configuration URL string, in the form of

http://username: password@www.foobar.foo/conf.ini). This solution provides

mediocre security at best - if the malicious user has access to the application code
(either reading the source code directly or decompiling the Java class file) or is
eavesdropping on the network, then the configuration data is still compromised.
Set the access permission of the file to be accessed by the attacked user only, and
launch the application with the rights of the attacked user.

3.7.3. Network Security

Network security is concerned with protecting data sent over the network.

3.7.3.1. Sending Sensitive Data over The Network

Problem

If access to the data store is performed over the network, then senstive
information can be obtained by eavesdropping. This includes the authentication
information and persistent data. Information could also be tampered with - changed on
its way through the communications channel.
Assessment

The persistence layer relies on the JDBC driver for connecting to the database. No
attempt is made on the part of the persistence layer to secure the information
exchange. Therefore, eavesdropping is a very real risk.
Solutions

Use a secure JDBC driver. With a secure driver, the communication between the

driver and the database is encrypted. The IDS JDBC driver is an example of a

secure JDBC driver (http://www.idssoftware.com/[dbcdrv.html).

Create a secure information exchange tunnel. Direct the database connection

through the secure tunnel (e.g. using SSH port forwarding).

65



3.8. Concurrent Use

The persistence layer can be used in a multi-threaded environment, with multiple
clients using the same PersistenceBroker object.

PersistenceBrokerFactory retains the persistence brokers it has constructed and
returns an existing instance if one exists for the specified configuration file.

As the threads utilize the same resources, there will quite probably be some resource
conflicts.

Database connection is a shared resource. If two threads want to access the database
at the same time, one will either have to wait until the persistence layer has finished
serving the first thread, or a pool of connections can be used.

Persistent objects are a shared resource. As retrieved objects are cached, then several
threads retrieving the same object are given a reference to the same object. If the threads
use the object as read-only, then no problem occurs. If, however, the threads modify the
objects, then undefined behaviour can occur in the thread context.

Database records are a shared resource. If a thread modifies a record, it is locked. If
another thread tries to modify the record at the same time, then the result depends on the
particular database implementation. Most probably an exception will be thrown by the
JDBC driver.

In case there is need for a persistence broker not shared with any other threads, the
method Per sistenceBroker Factory.createNew can be used. This method does not use the

cached persistence brokers, but creates a new one, that will not be given to other callers.

66



3.9. Logging

The persistence layer makes heavy use of logging. Every performed action is logged.
Logging enables to debug the application, to examine unexpected behaviour and to
perform auditing.

It is possible to configure logging at runtime. Logging behaviour can be controlled by

editing a logging configuration file.

There are 5 levels of logging. They are ordered ascendingly and are nested - lower
levels include the higher levels. The levels are:

DEBUG Logging every operation detail. This level should be used only for
debugging purposes, as the output is extremely abundant and can
amount to thousands of entries in a few calls to a persistence broker
instance.

INFO Logging application progress - what operations are performed,
what values stored, what data retrieved. This level should be used if
there is need for auditing information. The output is nowhere near as
abundant as on the previous level, but as all stored and retrieved values

are logged, it can still reach undesirable quantities.

WARN Logging potentially harmful situations that do not have affect on
program flow.
ERROR Logging error situations that interrupt the current program flow, but

can be possible to recover from.

FATAL Logging unrecoverable error situations that make it impossible for
the application to continue. Setting the logging level to FATAL
practically disables logging, as fatal errors are extremely rare under

normal circumstances.

67



The logging system used is the log4j package (a popular open source logging system,
available at http://jakarta.apache.org/logdj/). The target of the log output can be the
console, a file, a remote socket, a remote Unix Syslog daemon, a Windows NT Event
logger, a database table, an e-mail account, a IMS channel etc. Log messages can be sent

to multiple targets simultaneoudly - for example, written to the console and to afile.

For an example logging configuration file, see Appendix C: Sample Logging

Configuration.

68



3.10. Configuration

An instance of a persistence broker is created and configured from a configuration
file, which isin XML format. The configuration file contains the information for mapping
Java classes onto a persistence mechanism, and provides options for fine-tuning the

persistence layer (like specifying the exact class of the cache).
For the Document Type Definition (DTD) of the configuration file of a

JdbcPersistenceBroker, see Appendix A: Configuration File Syntax.

For an example configuration file of a JdbcPersistenceBroker, see Appendix B:
Sample Configuration.

The following items deal some issues, subject to frequent concern, that can be solved
through configuration. In all cases, configuring is done using pluggable interfaces - client

programmer specifies the concrete class implementing the interface that Jakamar will use.

3.10.1. Column-to-Field Conversions

At times, special conversion is needed to set the value of a table column to an object
field, and vice versa. For example, a common issue is that the object field is of type
boolean, but the table column is of type integer.

Jakamar uses pluggable classes that act as a conversion layer between objects and
tables - implementations of the jakamar.hel pers.ObjectToJdbcAdapter interface.

To solve a special conversion issue, the client programmer must write a custom
implementation of the interface and configure the persistence broker to use it for the

particular class or field.

69



An example of configuring the persistence broker to use a custom adapter:

<cl assmappi ng i d="Book" name="Book" dat abase="bookdb"
t abl e="book" >
<fi el dmappi ng nanme="aut hor" col um="book_aut hor"/>
<fi el dmappi ng name="title" colum="book title"/>
<fi el dmappi ng name="i sQut O St ock”
col um="book_out of stock"
adapt er ="f 0o. bar. Bool eanTol nt Adapter"/ >

</ cl assnmappi ng>

3.10.2. Accessing Object Fields

By default, Jakamar uses reflection to inspect and mutate the values of object fields.
However, it is possible that such an approach is unfit for a certain class. For example, the
class needs to fill the contents of another field as well, performing some custom changes.
Jakamar uses pluggable classes that act as adapters between the persistence layer and the
object fields - implementations of the jakamar.hel pers.Objectlintrospector interface.

To solve a special access issue, the client programmer must write a custom
implementation of the interface and configure the persistence broker to use it for the

particular class or field.

An example of configuring the persistence broker to use a custom introspector:

<cl assmappi ng i d="Book" name="Book" dat abase="bookdb"
t abl e="book" i ntrospector="fo00. bar. Bookl nt rospector">
<fi el dmappi ng nane="aut hor" col um="book_aut hor"/>
<fi el dmappi ng name="title" colum="book title"/>
</ cl assmappi ng>

3.10.3. Obtaining New I nstances of Persistent Classes

By default, Jakamar uses reflection to instantiate persistent classes. It is possible that
a class has a more complicated instantiation progress - for example, instances are obtained
from afactory class.

Jakamar uses pluggable classes that act as adapters between the persistence layer and
object creation strategy - implementations of the jakamar.helpers.ObjectFactory

interface.

70




To solve a special instantiation issue, the client programmer must write a custom
implementation of the interface and configure the persistence broker to use it for the

particular class or field.

An example of configuring the persistence broker to use a custom introspector:

<cl assmappi ng i d="Book" name="Book" dat abase="bookdb"
t abl e="book" factory="foo. bar.BookFactory">
<fi el dmappi ng nane="aut hor" col um="books_aut hor"/ >
<fi el dmappi ng nane="title" col um="books_title"/>
</ cl assnmappi ng>

3.10.4. Special SQL Syntax

Databases by different vendors can use syntax different from the one that is generated
by Jakamar by default.

Jakamar uses pluggable classes that generate SQL statements for a given database -
implementations of the jakamar .jdbc.SglGenerator interface.

To handle a database with a different flavor of SQL, the client programmer must
write a custom implementation of the interface and configure the persistence broker to use

it for the particular class or field.

An example of configuring the persistence broker to use a custom SQL generator:

<dat abase i d="bookdb" driver="sun.jdbc.odbc.JdbcCdbcDri ver"
url ="j dbc: odbc: ab” usernane="root" password="god"
sql gener at or ="f 0o. bar. Cust onf5ql Gener at or " >

</ dat abase>

3.10.5. Generating Object | dentities

There are a few types of identity generators available in Jakamar (see 3.3 Object
Identities). Jakamar uses pluggable classes that generate OIDs - implementations of the
jakamar .jdbc.|dentityGenerator interface.

To handle a specia identity generation strategy, the client programmer must write a

custom implementation of the jakamar.jdbc.ldentityGeneratorBuilder interface and

71




configure the persistence broker to use that builder for creating a custom identity
generator.

An example of configuring the persistence broker to use a custom OID generator:

<cl assmappi ng i d="Book" name="Book" dat abase="bookdb"
t abl e="book" identitygenerator="idgen2">

<fi el dmappi ng nane="id" col um="book id"/>

<fi el dmappi ng nane="nane" col um="book_nane"/>

<fi el dmappi ng name="title" colum="book title"/>
</ cl assmappi ng>

<i dentitygenerator id="idgen2"
bui | der ="f 0o. bar. Cust om denti t yGener at or Bui | der"/ >

On building a persistence broker, the specified identity generator builder class is
instantiated, is fed data from the configuration file, and finally it returns a usable identity

generator.

3.10.6. Caching Persistent Objects

Jakamar caches in memory the persistent objects it stores and retrieves. This can
increase object retrieval dramatically. The default cache class uses memory-sensitive
caching - if the application is short of memory, the cached objects are garbage collected.
However, the cache class is pluggable. If there is need for a different caching strategy, the
client programmer must write a custom implementation of the jakamar.helpers.Cache
interface and configure the persistence broker to use. For example, another cache might
set a size limit on the cache, or abandon cached instances based on the time they were last
looked up.

Caching can aso be disabled altogether.

An example of configuring the persistence broker to use a custom cache:

<cache cl ass="fo00. bar. Cust onCachel npl enent ati on"
enabl ed="true" />

72




3.11. Further Development

The persistence layer is far from being a completed product. The first fully usable
prototype contains the most vital functionality required - storing, retrieving, deleting.
Severa of the functionalities mentioned in the Persistence Broker pattern are yet to be
implemented.

Overview of items scheduled for further development:

Development Item  Details Priority

Cursors Provide support for a cursor that points to a set of primary
retrieved objects and that the user can move to the
next or previous retrieved object. The cursor makes
use of lazy initialization - an object is retrieved only
when the cursor arrives at the object.
The cursor will probably implement the
java.util.lterator interface (which is practically a
general interface for a cursor).
Transactions Provide support for transactions - grouping primary
persistence operations into atomic units that succeeds
or fails as awhole. Transactions are very helpful in
many applications, especialy in the business realm
(e.g. making a bank transfer consists of several
operations - decreasing the amount on the transferor
side and increasing on the transferee side - that must
all either succeed or fail).
Extent classes Provide support for inheritance among persistent primary
classes. A persistent class can have subclasses that
hold additional data and specify additional behaviour.
For example, class Person might have subclasses
Employee and Client. When retrieving Persons, the
persistence layer should return both employees and
clients. This inheritance must somehow be
implemented in the data store.
Object Query Provide support for the Object Query Language secondary
Language (OQL). OQL isan SQL-like declarative language
that provides a rich environment for efficient
guerying of database objects, including high-level
primitives for object sets and structures [ODM G1].
OQL has the advantage of simplicity and better
overview, when compared to constructing queries by
Setting parameters and criteria via method calls.

73



Development Item  Details Priority

Virtual proxies Provide support for lazy initiaization of persistent secondary
objects via virtua proxies. A virtua proxy isaproxy
for another object (the real persistent subject) that
materializes the subject when it is first referenced
[Lar01]. Asit could happen that the real object might
never really be needed, this can provide a notable
performance gain.
Distributed use Provide support for distributed use, in which thereis  tertiary
acentral persistence broker server that multiple
clients connect to and execute persistence operations
on.
Logging Allow logging configuration to be specified in the optional
configurableinthe  persistence configuration file.
same configuration

as persistence
XML files as data Provide support for using XML files as data storage  under
stores mechanisms. Although XML files are not consider-
comparable with databases in terms of ease of use, ation
performance and functionality, they have the benefit
of smplicity - there is no need for a database
management system, everything is contained in files.
For smaller projects, they provide adequate
performance.
Graphical user Provide a graphical application for producing lowest
interface for configuration files. It should be able to generate
configuration database table structure and a configuration file from
the class structure.

Another approach would be to use an existing
graphical tool (such do exist - Rational Rose is one)
and add support for Jakamar via plugins or scripting.

74



4. Benefitsand Tradeoffs

4.1.Jakamar Compared to Embedding SQL Directly

A simple approach to persistence logic is embedding SQL statements directly in
application code. Most of the advantages of a persistence broker were discussed in the
Persistence Broker pattern, see 2.3 Forcesto 2.6 Rationale.

4.1.1. Sample Code
Smple Retrieval

The following two sections of code both retrieve all SimplePersons from the database
that have a location of 'Saue'. When comparing the sections, we can see that using
Jakamar yields a much more terse and understandable program code, not to mention with

less effort.

Example of using embedded SQL for ssmple retrieval.

Connection connection = DriverManager. get Connection("j dbc: odbc:ent");
Statenent stmt = connection.createStatenent();
Resul t Set rs = stnt.executeQuery(
"SELECT * FROM S| MPLEPERSON WHERE | ocation = 'Saue'");
Col l ection results = new ArrayList();
while (rs.next()) {
Si mpl ePer son obj ect = new Si npl ePerson();
object.id rs.getlnt("id");
obj ect. firstNane rs.getString("firstNane");
obj ect . | ast Nane rs.getString("lastNane");
obj ect.l ocation rs.getString("location");
obj ect . phone rs.getString("phone");
resul ts. add(object);

}

connection. cl ose();

L L L T

Example of using Jakamar for simple retrieval.

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
Si mpl ePer son param = new Si npl ePerson();

param | ocati on = "Saue"

Query query = broker.createQuery(param new String[]{"location"}, null);
Col l ection results = broker.retrieveColl ection(query);

75




Cascaded Retrieval

The following two sections of code both retrieve all Persons from the database that
have alocation of 'Johvi', and also retrieve their Phone objects. Embedded SQL gets
increasingly complex with relationships - for example, if Phone objects also had related
objects, then athird subquery is needed, etc. But the Jakamar syntax does not differ from
simpleretrieval - if arelationship between two classes has been specified to cascade over

retrieval, then it is handled automatically by Jakamar.

Example of using embedded SQL for cascaded retrieval.

Connection connection = DriverManager. get Connection("jdbc: odbc:em");
Statenment stmt = connection.createStatenent();
ResultSet rs =
stm . execut eQuery("SELECT * FROM PERSON WHERE | ocation = 'Jdhvi'");
Coll ection results = new ArrayList();
while (rs.next()) {
Person person = new Person();
person.id rs.getlnt("id");
person. first Nanme rs.getString("firstNanme");
person. | ast Nane rs.getString("lastNane");
person. | ocation rs.getString("location");
resul ts. add( person);
St at enent stnt Sub = connection. createStatenent();
Resul t Set rsSub = stnt Sub. execut eQuer y(
"SELECT * FROM PHONE WHERE personld = " + person.id);
while (rsSub.next()) {
Phone phone = new Phone();
phone.id = rsSub.getint("id");
phone. personld = rsSub. getlnt("personld");
phone. phone rsSub. get Stri ng("phone");
per son. phones. add( phone) ;

st mt Sub. cl ose();

}
stnt.close();
connecti on. cl ose();

Example of using Jakamar for cascaded retrieval.

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
Per son param = new Person();

param | ocation = "J&hvi";

Query query = broker.createQuery(param new String[]{"location"}, null);
Col l ection results = broker.retrieveCollection(query);

76




Soring
The following two sections of code both store a new SimplePerson in the database.

With Jakamar, the action is even more ssimple than retrieval..

Example of using embedded SQL for storing data.

Connection connection = DriverManager. get Connection("j dbc: odbc:ent");
Statenent stmt = connection.createStatenent();
Si mpl ePer son person = new Si npl ePerson();
ResultSet rs = stnt.executeQuery(
"SELECT MAX(id) + 1 AS newid FROM S| MPLEPERSON") ;
rs.next();
/1 The new id value is got this value to be able to set it to the
/'l object imediately.
person.id = rs.getlnt("newd");
rs.close();

person. firstName = "John"
person. | ast Nane = "Doe";
person. |l ocation = "Neverneverl and"
per son. phone = "555-5656";

stm . execut eUpdat e(
"1 NSERT | NTO SI MPLEPERSON (i d, firstNane, | ast Nane, | ocati on, phone)" +
"VALUES (" + person.id + ", '"" + person.firstNane + "', '" +
person.|astNane + "', '" + person.location + "', '" +
person. phone + "')");

stm.close();

connection. cl ose();

Example of using Jakamar for storing data.

Per si st enceBr oker broker = PersistenceBrokerFactory.create("conf.xm");
Si mpl ePer son person = new Si npl ePerson();
person. firstName = "John"

person. | ast Nane = "Doe";
person. |l ocation = "Neverneverl and"
per son. phone = "555-5656";

br oker. st ore(person);

77




4.1.2. Tradeoffs

The initial disadvantage of choosing to implement the Persistence Broker pattern is
that it is a non-trivial task, possibly greater than the developing the application itself.
However, as the component is easily reusable in consecutive applications, it pays off.

The main disadvantage of using such a persistence broker is a decrease in the
persistence functionality. With embedded SQL, programmers can execute incredibly
complex queries just as easily as simple storage and retrieval. With a persistence broker,
the programmer has firm boundaries on persistence functionality. Therefore, using a
persistence broker is mostly suitable for applications that keep no business logic in the
database and that do not need to perform complex data mining and analysis. For
applications that do their work with business objects that need to be persistent, a
persistence broker is an excellent solution.

Another tradeoff with using a persistence broker might be a decrease in speed. As
such a component can have an intricate inner structure, persistence operations can develop
a notable overhead. The following chapter explores this issue by benchmarking simple
persistence operations.

4.1.3. Benchmarks

For information about the test environment, the data structure and the columns of the

table of results, see 4.4 Benchmark I nformation.

78



Action 1 - find all SimplePersons from the location 'Saue'.

Repeated? Ops Embedded SQL Jakamar Factor to
Sum [ms] | Avg[ms] [ Sum[ms]| Avg[ms] Jakamar
No 450 4500 10,00 5400 12,00 1,20
Yes 1850 4,11 1500 3,33 0,81
Action 2 - update all the SimplePersons retrieved in action 1.
Repested? Ops Embedded SQL Jakamar Factor to
Sum [ms] | Avg[ms] | Sum[ms]| Avg[ms] Jakamar
No 450 3350 7,44 3450 7,67 1,03
Yes 1650 3,67 3300 7,33 2,00

Action 3 - find all Persons from the location 'Johvi' and retrieve their Phones

automatically.

Repeated? Ops Embedded SQL Jakamar Factor to
Sum[ms] | Avg[ms]| Sum[ms]| Avg[mg| Jakamar

No 50 8450 | 169,00 8750 175,00 1,04

Yes 5650 | 113,00 960 19,20 0,17

Action 4 - insert a number of new Persons and two Phones for each person.

Repeated? Ops Embedded SQL Jakamar Factor to
Sum [ms] | Avg[ms] | Sum[ms]| Avg[ms] Jakamar

No 50 2200 44,00 4850 97,00 2,20

When examining the results, we can see that Jakamar's main strength lies in retrieval
- in some cases it can be very fast, e.g. when executing repeated retrievals in action 3.
This good performance is caused by caching - as objects that are cached do not need to be
fully read from the database (once their identity is clear, their cached instance can be
reused), several operations can be skipped altogether. An especially high performance
yield comes with relationships - cached objects already have their related objects set in
place, so additional queries to the database for getting the related objects are not needed.

On the whole, the results were surprisingly good. | did not expect al the application
logic existent in Jakamar to have such a small time overhead, and was fearing at least a
triple time penalty with using Jakamar.

On the basis of these results, using a persistence broker does not make persistence
operations tremendously slower, but as seen from the code samples, yields much less code
to develop.

79



4.2. Jakamar Compared to Smilar Components

There is abundant software available that performs mapping Java objects to relational
databases. Some products are quite powerful, providing a rich user interface for
configuration and offering automatic generation of the class diagram from the database
table diagram. However, most products do not have the level of unintrusiveness that the
Persistence Broker pattern, and consequently the Jakamar persistence layer, have.
Persistent classes usualy have to extend a superclass that couples them with the
persistence layer.

There is only one component that does compare to Jakamar in terms of
unintrusiveness and functionality - ObJectRelational Bridge.

4.2.1. ObJectRelational Bridge*

ObJectRelationalBridge (OJB) is an open source software (publicly available at
http://obj ectbridge.sourceforge.net/) roughly following the Persistence Broker pattern. Its

functionality and structure is quite similar to Jakamar.

Advantages compared to Jakamar
supports cursors (for information on cursors, see 3.11 Further Devel opment)
has partial support for transactions - only if the underlying database supports

transactions. Some databases do not support transactions, like MySQL

(http://www.mysgl.com/).

supports virtual proxies (for information on virtual proxies, see 3.11 Further
Development)
supports extent classes (for information on extent classes, see 3.11 Further

Development)

! By February 2002, anew version of OJB has cleared several of the concerns mentioned here, and the
benchmarks are suspect aswell. The following should be read with that in mind.

80



Disadvantages compared to Jakamar
Has virtually no logging. It is possible to have some messages printed to the console
after recompiling the classes to support this, but the messages are inexpressive and
few.
Error handling is severely lacking - in most cases, encountered exceptions are caught
and not let to rise outside the component, thus giving no clue if there was an error.
Does not support composite identities.
Table columns can only have certain pre-defined types - the types are hard-coded in.
Although they cover most of the possible column types, they do not cover all.
Object identity fields are hard-coded to integer type.
There is only one identity generation strategy - using a sequence table in the database.
It is possible to configure OJB to use an arbitrary strategy, but not on per-class basis
or even a per-persistence broker basis - the specified strategy will then be used by all
persistence brokers. Configuring this arbitrary strategy implementation has to be done
outside the application - the broker configuration file holds no information for it.
There is one global object cache for the entire machine. As caches do not know where
an object is from - they only know its type and identity values, this can lead to
problems in cases where there are multiple applications running on the same machine
that use the same persistent classes, but store them in different data stores.
Contains some bugs - for example, one type of query disregards its criteria and
returns every object for the specified class it can find.
Instantiating persistent classes is not flexible - the user cannot specify an arbitrary
object creation strategy.
Does not support custom SQL.
Does not support a custom way for accessing object fields - the access is hard-coded
to be done using reflection and cannot be changed.

APl documentation is inadequate, incomplete and defective.

81



4.2.2.

Benchmarks

For information about the test environment, the data structure and the table columns,

see 4.4 Benchmark Infor mation.

Action 1 - find al SimplePersons from the location 'Saue'.

Repeated? Ops 0OJB Jakamar Factor to
Sum [mg] | Avg[ms] | Sum [ms]| Avg[ms] Jakamar
No 450 6550 14,56 5400 12,00 0,82
Yes 3200 7,11 1500 3,33 0,47
Action 2 - update al the SimplePersons retrieved in action 1.
Repeated? Ops 0oJB Jakamar Factor to
Sum[ms] | Avg[ms] | Sum[ms]| Avg[mg| Jakamar
No 450 10750 23,89 3450 7,67 0,32
Yes 10350 23,00 3300 7,33 0,32
Action 3 - find al Persons from the location 'Johvi' and retrieve their Phones
automatically.
Repeated? Ops OJB Jakamar Factor to
Sum [mg] | Avg[ms] | Sum[ms]| Avg[mg] Jakamar
No 50 14550 | 291,00 8750 175,00 0,60
Yes 1650 33,00 960 19,20 0,58
Action 4 - insert a number of new Persons and two Phones for each person.
Repeated? Ops 0oJB Jakamar Factor to
Sum[ms | Avg[ms] | Sum[ms]| Avg[mg| Jakamar
No 50 10500 | 210,00 4850 97,00 0,46

These benchmark results are even more surprising than those in comparison with
embedded SQL. | expected OJB, a product that has had a considerably longer lifetime, to

be much better in terms of performance than Jakamar, a product that is a newborn.

It is possible that such good performance is caused by some issues that need to be

handled but have not occurred to me.

On the basis of these results, Jakamar can be pronounced to give excellent

performance.

82




4.3. Conclusion

The Persistence Broker pattern is a good approach to handling data persistence. As
we saw from its comparison with directly embedded SQL, it does not incur an
unacceptable performance . In many cases, a persistence broker can give results
amazingly fast, because it caches the persistent objects it encountered.

However, the main argument for a persistence broker is its ease of use. Utilizing it
delivers clean and elegant application code, faster development time (as the programmer
does not need to produce any persistence logic), easy persistence maintenance (changes
are needed only in the configuration file) and good portability.

On the basis of these results, we can conclude that the Persistence Broker is a good
approach to handling data persistence, although not a solution fit for every application.

When comparing Jakamar, one implementation of the Persistence Broker pattern, to
another implementation, OJB, we can see that the main strength of Jakamar is in its
careful design and flexibility - it has powerful logging, good error handling and its
architecture is compartmentalized so that custom subcomponents can be used with the
basic aspects of persistence operations, like creating SQL syntax and accessing object
fields.

For the time being, Jakamar is lacking some useful functionality that OJB possesses,
like supporting cursors and transactions. However, these items are aready on the list for
future devel opments.

The benchmarks showed that Jakamar has surprisingly good performance compared
with OJB. It is difficult to say what causes this good performance, as OJB does not log its
activity and inspecting source files and profiling the performance of every single
operation is very time-consuming.

On the basis of the comparison and the benchmarks, Jakamar can be pronounced
viable and quite promising. When future development cycles have filled the present voids

in Jakamar's functionality, it could become a widely-used component.

83



4.4 .Benchmark Information

The logging inside Jakamar was disabled during benchmarking in order to

concentrate on the performance of the persistence operations.

Test environment

Testing was carried out on a machine that hosted both the application and the

database server.

Compuiter:

Database system:
Database driver:

Test Data Structure

Table SIMPLEPERSON contained 90,000 records.

SIMPLEPERSON
id: int

firstName: varchar
lastName: varchar
location: varchar
phone: varchar

Celeron 433 MHz, 128 MB RAM, Windows 95
Microsoft Access 97
Sun's JDBC-ODBC bridge

SimplePerson

id : int

firstName : String
lastName : String
location : String
phone : String

Figure 4-1. Relational and object-oriented data structure for SmplePerson

Table PERSON contained 6,800 records. Table NUMBER contained 16,500 records
and had aforeign key column referencing the PERSON table.

PERSON

id: int

firstName: varchar
lastName: varchar
location: varchar

Figure 4-2. Relational and object-oriented data structure for Person and Phone.

PHONE

Person

id: int

@ personld: int

phone: varchar

id : int

firstName : String
lastName : String
location : String
phones : Collection

Phone

=)

id : int
personld : int
phone : String




The following operations were benchmarked:

1. retrieving all SimplePersons for the location 'Saue

2. updating every entry among the results retrieved in the above operation

3. finding al Persons from the location 'Jhvi' and retrieving their Phones automatically

4. inserting a number of new Persons and two Phones for each person

Results Table

Repested whether the same operation was repeated for multiple times.

Ops how many atomic operations - storings or retrievals - the action
contained. For example, action 1 retrieved 450 SimplePerson
objects.

Sum how much time did all the ops take.

Avg how much time did an op take on the average.

Factor to Jakamar by what factor is X faster that Jakamar (if below 1, then Jakamar
is faster than X)

Repested? Ops X Jakamar Factor to

Sum [mg] | Avg[ms] | Sum[ms]| Avg[ms] Jakamar

Note that | carried out the benchmarking personally. It is generally recommendable to

let a neutral third party perform this action, because as someone who is deeply familiar

with Jakamar, my testing might have been unconscioudy tuned in favor of Jakamar.

However, due to limited time, | had no chance to obtain outside help.

85




5. Conclusion

| set out to achieve the following goals:
to propose a reusable generic approach to handling persistence logic - the
Persistence Broker design pattern, that solves several problems when using
relational database management systems in an object-oriented application
environment. The basic idea for such software was introduced in Scott W.
Ambler's whitepaper "Mapping Objects to Relational Databases’ [Ambl00a)].
to present Jakamar, a component | had written in the Java programming language
as an implementation of this pattern
to compare Jakamar's performance to the most basic approach to persistence logic
to find out whether the Persistence Broker offers a more preferable solution; the
most basic approach being embedding database access logic directly into
application code. Jakamar was also compared to other software products that
follow the Persistence Broker pattern, to find out whether Jakamar is a viable
solution among similar components.

All the three goas were realized. Based on the results of the comparison with the
basic approach, | deemed the Persistence Broker to be a well-designed approach to
persistence logic. Using Jakamar yielded faster program development, better modularized
application structure, and in cases even better performance on persistence operations.

The software market has very few software products available that follow the
Persistence Broker concept strictly. Among the similar available software, Jakamar
performed very well. Its functionality could be more extended, but the missing
functionality was already planned into future development.

86



6. Glossary

API

composite identity

enterprise application

garbage collection

introspection

JDBC

JMS

JVM

lazy initialization

materialization

object database

stands for Applications Programming Interface. It is the
interface to a collection of classes that tells what operations
are available and what do they do, but usually discloses their
implementation details

an object identity that has a value composed of severa fields
a combination of building block components that work
together to perform a business function, usually accessible
over the network [IBMWSL]]

identifying no-longer used memory which was dynamically
allocated and returning it to a pool of free memory [Mar97]
see reflection

the Java API for executing SQL statements, consisting of a
set of classes and interfaces written in the Java programming
language [Grah97]

the Java Message Service, a specification for message
passing and related operations among distributed software
components [JIM S01]

the Java virtua machine. An abstract computing machine
that executes Java programs.

the program refrains from creating certain resources until the
resource is first needed, thus keeping resource consumption
a avaluable minimum [Bisl]

the process of retrieving a persistent object from a data store
(alias object-oriented database, object-oriented database
management system) a database management system that

supports the modelling and creation of data as objects

87



object identity

OID
persistence

persistence layer

persistence logic

persistent data

persistence operarions

pluggable interface

reflection

serviet

soft reference

transient object

(alias OID) an identifier that, assigned to a persistent object,
uniquely identifies the object

see object identity

the ability of objects to exist beyond the lifetime of the
application [Ball]

a collection of classes that provide objects the ability to be
persistent, being effectively a wrapper for the persistence
mechanism [Ambl 00b]

application code that handles storing, deleting and retrieving
persistent data

data that has persistence

operations like saving, deleting and retrieving persistent data
denotes a situation where an instance of a specific interface
can be "plugged in" to the application. The application
accepts an instance of the interface and uses the interface
operations, without knowing or caring about the concrete
class that is providing the implementation behind the
operations.

the process of inspecting a class for metainformation -
information about its fields and methods, calling methods
and accessing fields dynamically, etc. Also known as
introspection. [McM97]

a Java class that has the functionality of a web application -
it can be called over the web and it responds by sending
back content

an object reference that is cleared at the discretion of the
garbage collector in response to memory demand

object that only resdes in memory and does not persist

outside of an application [Sunl]

88



transparent persistence

web application

automatically provided persistence without special effort on
the client programmer side. No difference between
persistent and transient objects. [Sunl] [Transl]

software that is installed on a web server and accessed over
the network.The most common web application isan HTML
document that has dynamically (on-request) generated
content, e.g. a weather forecast page.

89



7. Kokkuvote

Minu t60 tutvustab Uhte konkreetset lahendust objektide plsivuse saavutamiseks Java
keskkonnas - objektide pusivuse kihti Jakamar.

Plsivad objektid on objektid, mis sédilivad programmi Uhest jooksmisest kauem.
Tavaliselt saavutatakse see objektide salvestamisega mingisugusesse andmehoidlasse,
kdige Uldlevinumal juhul relatsioonilisse andmebaasi. Tarkvara Uheks pohieesmérgiks on
pUsivate objektide tekitamine, muutmine ja vaatamine. Programmeerijatel tuleb lahendada
moningaid ikka ja jdlle korduvaid probleeme, mis kerkivad esile relatsiooniliste
andmebaaside kasutamisega pusivusmehhanismina objekt-orienteeritud  tarkvara
keskkonnas. Suurim probleem on andmestruktuuri muudatuste sisseviimine. Juba véike
muudatus voib tuua kaasa muudatuste ahelreaktsiooni programmi pusivusloogikas.
Suuremad muudatused - naiteks andmebaasi vahetamine teise tootja andmebaas vastu -
on viimelised tekitama vaga palju lisatédd. Teine murekiisimus on programmi disain -
paljude programmide plsivusloogika on vaga sarnane, erinedes pohiliselt ainult andmete
tépses struktuuris. Seda sarnasust voiks éra kasutada ja luua lahendus, mis automatiseerib
programmeerija tood.

Omatdos seadsin ma jargmised eesmargid:

Esitada Persistence Broker disainimuster kui Uldine korduvkasutatav plsivuslioogika

mehhanism. Persistence Broker-lahenduse korral on &riloogika pusivuslioogikast

eraldatud tasemeni, kus pusivad objektid el ole teadlikud sellest, et neid salvestatakse
ja taastatakse andmebaasist. Lahendust on kerge kohandada erinevate programmide
andmestruktuuriga.

Tutvustada komponenti Jakamar, mille ma kirjutasin Java keeles kui sdle
disainimustri realisatsiooni. Jakamar on objektide pilsivuse kiht, mille ainsaks
eesmargiks on olla ehituskiviks teiste programmide arendamisel. Jakamari puhul on
pusivusmehhanism taielikult automatiseeritud - programmeerijal pole vajadust
kirjutada Uhtegi rida andmebaasiga suhtlemisest, andmete salvestamise, kustutamise ja

taastamise eest hoolitseb komponent ise.

90



Vorrelda Jakamari kasutust tavgjuhuga, mille puhul andmebaasiga suhtlemise loogika
sisaldub programmis endas, ja teiste tarkvaratoodetega, mis jargivad Persistence
Broker disainimustrit.

Koik kolm eesmarki téideti. Ma joudsin jéreldusele, et Persistence Broker-i puhul on
plUsivusloogika hasti kujundatud, ja et Jakamar on elujduline tarkvarakomponent. Jakamar
koondas endasse terve programmi pusivusloogika ja vBimaldas juurdepéésu andmete
plusivusele lihtsate toimingute kaudu, nagu salvesta(objekt), kustuta(objekt) ja
taasta(kriteeriumid). Lisaks eespool kirjeldatud probleemide lahendamisele andis
Jakamari  kasutamine  paremini  liigendatud ~ programmistruktuuri,  kiirema
programmiarenduse (kuna programmeerija e pea ise implementeerima andmebaasiga

suhtlemist) ja voimaluse objektide taastamise kiiremaks teostamiseks.

91



8. References

[AGCS]]

[Ambl00g]

[Ambl 00b]

[Bal1]

[BibTec01]

[Bisd]

[Gamo5)]

[Grah97]

AG Communications Systems. AG Communication Systems Pattern
Template

http://www.agcs.com/supportv2/techpapers/patterns/templ ate.htm.

Scott W. Ambler (October 2000). Mapping Objects To Relational
Databases. http://www.AmbySoft.com/mappingObj ects.pdf.

Scott W. Ambler (November 2000). The Design of a Robust Persistence
Layer For Relational Databases.
http://www.ambysoft.com/persistencelayer.pdf.

Konda R. Balabbigari. Java Object Serialization. JavaCaps,

http://www.javacaps.com/java serial.html.

Biblio Tech Review (April 2001). Database Management Systems
(DBMS). Biblio Tech Review, Technical Briefings,
http://www.biblio-tech.com/html/databases.html.

Philip Bishop and Nigel Warren. Lazy instantiation. JavaWorld,

http://www.javaworld.com/javaworld/javati ps/jw-javatip67.html.

Erich Gamma et a (1995). Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Graham Hamilton et a (June 1997). JDBC Database Access with Java: A
Tutorial and Annotated Reference. Addison-Wesley.

92



[IBMWSI]

[IMSO1]

[Lar0d]

[Mar97]

[McM97]

[ODMG1]

[Sunl]

[Sund01]

[Transl]

[UML97]

IBM WebSphere InfoCenter. What are enterprise applications?.
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter
/was/0001.html.

Sun Microsystems (October 2001). Java™ Message Service API.

http://java.sun.com/products/ims/index.html.

Craig Larman (July 2001). Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process. Addison-
Wedley.

Vern Martin (December 1997). Garbage Collection In Java.
http://trident.mcs.kent.edu/~vmartin/proj/proj.html.

Chuck McManis (September 1997). Take an in-depth look at the Java
Reflection API. JavaWorld,
http://www.javaworld.com/javaworld/jw-09-1997/jw-09-indepth.html .

Object Data Management Group. ODMG Standard Overview.

http://www.odmg.org/standard/standardoverview.htm.

Sun Microsystems. Transparent Persistence, Java Application Developer
Central, http://www.jadcentral.com/newscentral/feature.jsp?feature 1D=8.

Todd Sundsted (June 2001). Secure your Java apps from end to end, Part
1. JavaWorld,

http://www.javaworld.com/javaworld/jw-06-2001/jw-0615-howto.html.

Transparent persistence in object-relational mapping,
http://www.obj ect-rel ational .com/articles/transparent persistence.html.

Rational Software Corporation (January 1997). UML Semantics.

93



9. Appendices

9.1. Appendix A: Configuration File Syntax
Document Type Definition (DTD) for the configuration file.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<l--
The order in which the elenents appear is not relevant, save for
i dentitygenerators - they have to appear after tables and
cl assmappi ngs.

-->

<l--
The attribute "builder" specifies the full class name of the
j akamar . Per si st enceBr oker Bui | der inplenentation to be used for
building this PersistenceBroker. This attribute is mandatory.
The attribute "errorhandlingpolicy" specifies the full class nane
of the jakamar. hel pers. ErrorHandlingPolicy inplenentation to be used
as the error handling policy in the built persistence broker. This
attribute is not mandatory and defaults to
"j akamar . hel pers. Fai | Fast Error Handl i ngPol i cy".
-->
<! ELEMENT persi stenceconfiguration (cache?, database+, classmapping+,
i dentitygenerator* ) >
<! ATTLI ST persi stenceconfiguration
bui | der CDATA #REQUI RED
errorhandl i ngpol i cy CDATA #l MPLI ED
>

<l--
The configuration of the internal object cache of the persistence
framework. This elenent is not mandatory.

The attribute "class" specifies the full class name of the
j akamar . Cache i nplenentation used. This attribute is not nandatory
and defaults to "jakamar. Defaul t Cache"
The attribute "isenabl ed" specifies whether the cache is enabl ed.
If not true, then this setting overrides all other caching
settings in classmappings. Enabling the cache speeds up object
retrieval. This attribute is not mandatory and defaults to "true"
-2
<! ELEMENT cache EMPTY >
<! ATTLI ST cache
cl ass CDATA #| MPLI ED
enabled ( true | false ) "true"
>

<l--
| nformati on about a database. At | east one instance of this el enent
i's mandatory.

94




The attribute "id" specifies the id of the database. This attribute
i s mandatory.
The attribute "driver" specifies the full name of the JDBC driver
e.g. "sun.jdbc. odbc.JdbcQdbcDriver". This attribute is nandatory.
The attribute "url" specifies the URL of the database, e.g.
"jdbc: odbc:testdb”. This attribute is mandatory.
The attribute "sqgl generator” specifies the full nanme of the
j akamar . j dbc. Sgl Generator inplenentation to use for creating SQ. for
this database. This attribute is not nandatory and defaults to
"j akamar. j dbc. Def aul t Sql Gener at or"
The attribute "usernane" specifies the usernane for connecting to the
dat abase. This attribute is nandatory.
The attribute "password" specifies the password for connecting to the
dat abase. This attribute is nandatory.
-->
<! ELEMENT dat abase (table+) >
<I ATTLI ST dat abase
id | D #REQUI RED
driver CDATA #REQUI RED
url CDATA #REQUI RED
sql gener at or CDATA #| MPLI ED
user nane CDATA #| MPLI ED
password CDATA #l MPLI ED

<l--
| nformati on about a dat abase tabl e.

The attribute "nane" specifies the nane of table, e.g. COURSE
This attribute is mandatory.
The attribute "schemn" specifies the schena of table, e.g
COURSE_I NFO. This attribute is not mandatory.

-->

<l ELEMENT table (colum+) >

<I ATTLI ST table
nane | D #l MPLI ED
schema CDATA #REQUI RED

<l--
| nf ormati on about a dat abase table col unm.

The attribute "nane" specifies the name of columm, e.g. NAME. This

attribute i s nmandatory.

The attribute "type" specifies the type of the colum. It nust be

the nane of a constant defined in java.sql.Types, e.g. VARCHAR

This attribute is nandatory.

The attribute "isprinmarykey" specifies whether the colum is a primary

key colum. This attribute is not nmandatory and defaults to "fal se"
-->
<! ELEMENT col um EMPTY >
<I ATTLI ST col um

nane | D #REQUI RED

type ( ARRAY | BIGNT | BINARY | BIT | BLOB | CHAR | CLOB | DATE |
DECI MAL | DI STINCT | DOUBLE | FLOAT | | NTEGER | JAVA_OBJECT |
LONGVARBI NARY | LONGVARCHAR | NULL | NUMERIC | OTHER | REAL | REF |
SMALLINT | STRUCT | TIME | TIMESTAMP | TINYINT | VARBI NARY | VARCHAR )

95




#REQUI RED
i sprimarykey ( true | false ) "false"
>

<l--
Information for mapping a Java class onto a database table.

The attribute "nane" specifies the full nane of the class, e.g.

j akamar.test. Course. This attribute is nmandatory.

The attribute "database" specifies the id of the database that
contains the table the class maps onto, described in this file. This
attribute is mandatory.

The attribute "table" specifies the id of the database table that the

class maps onto, described in this file. This attribute is nandatory.
The attribute "factory" specifies the full name of the

j akamar . net a. Obj ect Factory inplenmentation to use for constructing

i nstances of the class. This attribute is not nmandatory and defaults
to "jakanmar. neta. Def aul t Obj ect Factory".

The attribute "introspector" specifies the full name of the

j akamar . hel pers. Obj ectlI ntrospector inplenentation to use for accessing
the fields of an object of the class. This attribute is not nandatory

and defaults to "jakamar. hel pers. Def aul t Obj ect | ntrospector”

The attribute "iscached" specifies whether instances of this class
shoul d be cached by the persistence framework to speed up object
retrieval. This attribute is not mandatory and defaults to "true"
The attribute "adapter" specifies the full class nane of the

j akamar . j dbc. Obj ect ToJdbcAdapter inplenentation to use for

comuni cating with the JDBC storage and retrieval interfaces. The
speci fied adapter will be used for all the napped fields that do not

have their own adapter specified. This attribute is not mandatory and

defaults to "jakamar.jdbc. Defaul t Obj ect ToJdbcAdapter™.
The attribute "identitygenerator" specifies the id of the identity
generator used for generating new identities for the napped cl ass.
This attribute is not mandatory.
-->
<! ELEMENT cl assmapping ( fiel dmappi ng+, relationshi pmapping* ) >
<! ATTLI ST cl assmappi ng
nane | D #REQUI RED
dat abase | DREF #REQUI RED
tabl e | DREF #REQUI RED
factory CDATA #| MPLI ED
i ntrospector CDATA #l| MPLI ED
i scached CDATA #| MPLI ED
adapt er CDATA #l MPLI ED
i dentitygenerator | DREF #l MPLI ED

<I--
Information for mapping a Java class field onto a database table
col um.

The attribute "nane" specifies the nane of the Java class field.
This attribute is nmandatory.

The attribute "colum" specifies the id of the database table
colum, defined in this file. This attribute is nmandatory.

The attribute "adapter" specifies the full class nane of the

j akamar. j dbc. Obj ect ToJdbcAdapter inplenentation to use for

96




<

<!

<!

<

comuni cating with the JDBC storage and retrieval interfaces. This
attribute is not mandatory and defaults to

"j akamar . j dbc. Def aul t Obj ect ToJdbcAdapt er "

>

ELEMVENT fi el dmappi ng EMPTY >

ATTLI ST fi el dnmappi ng

nane | D #REQUI RED

col um | DREF #REQUI RED

adapt er CDATA #l MPLI ED

Information for mapping a relationship between two cl asses.

The attribute "cardinality" specifies the cardinality on the detai
side of the relationship. Avalid value is any positive integer. A
value of 1 indicates a one-to-one relationship, a value greater than
1 indicates a one-to-nany relationship. This attribute is not

mandat ory and defaults to "1".

The attribute "rel atedcl ass" specifies the id of the classnmapping

for the detail class, defined in this file. This attribute is

mandat ory.

The attribute "masterfield" specifies the nane of the reference field
in the master class; it is either a sinple object reference, a Java
array or a subtype of java.util.Collection. It is probably not a
field with a mapping. This attribute is mandatory.

The attribute "collectionclass" specifies the concrete inplenentation
of the java.util.Collection interface to instantiate and set to the
master field if the relationship is a one-to-many relationship, the
field is null and is not a Java array. This attribute is not mandatory
and defaults to "java.util.ArrayList".

The attribute "isstorecascaded" specifies whether to automatically
store the related object(s) with the parent. This attribute is not
mandat ory and defaults to "fal se"

The attribute "isdel etecascaded” specifies whether to automatically
delete the related object(s) with the parent. This attribute is not
mandat ory and defaults to "fal se"

The attribute "isretrievecascaded" specifies whether to automatically
retrieve the related object(s) with the parent. This attribute is not
mandat ory and defaults to "fal se"

The attribute "bindings" specifies the bindings of fields between the
master class and the detail class. The bindings are comma- separ at ed
and have the follow ng fornat:

"masterField = detail Field, masterField = detail Field"

This attribute is not nandatory.

>

ELEMENT r el ati onshi pmappi ng EMPTY >

ATTLI ST rel ati onshi pmappi ng

cardinal ity CDATA #l MPLI ED

rel at edcl ass CDATA #REQUI RED

mast erfi el d CDATA #REQUI RED

col I ecti oncl ass CDATA #| MPLI ED

i sstorecascaded ( true | false ) "fal se"

i sdel etecascaded ( true | false ) "false"

isretrievecascaded ( true | false ) "fal se"

bi ndi ngs CDATA #| MPLI ED

97




<I--
The configuration of an identity generator.

The attribute "id" specifies the id of the identity generator. If the

idis "default”, then it will be used as the default identity
generator for those class mappings that do not have a specific
generator set. This attribute is mandatory.
The attribute "builder" specifies the full nane of the
j akamar . j dbc. Jdbcl dentityGenerat or Bui |l der inplenmentation used for
buil ding an identity generator. The buil der approach is necessary
because different identity generators have totally different
configuration settings that cannot be anticipated. This attribute
i's mandatory.

-->

<! ELEMENT i dentitygenerator EMPTY >

<! ATTLI ST identitygenerator
id | D #REQUI RED
bui | der CDATA #REQUI RED

>

98




9.2. Appendix B: Sample Configuration

A sample configuration file.

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE per si st enceconfi guration

SYSTEM " per si st enceconfi gurati on. dtd">

<persi stenceconfiguration

bui | der="j akanmar . j dbc. JdbcPer si st enceBr oker Bui | der ">

<dat abase i d="books" driver="sun.jdbc. odbc. JdbcCOdbcDri ver"
url ="j dbc: odbc: books" usernane="root" password="god">
<t abl e name="book">
<col umm nane="book_i d" type="| NTEGER" i spri marykey="true"/>
<col umm nane="book_name" type="VARCHAR"/ >
<col um nanme="book_title" type="VARCHAR'/>
<col um nanme="book_synapsi s" type="CLOB"/>
<col um nane="book_sanpl e_chapter" type="CLOB"/>
<col um nane="book_publisher_id" type="I|NTEGER"/ >
</tabl e>

<t abl e nane="publi sher">
<col umm nane="publ i sher i d" type="INTEGER" isprimarykey="true"/>
<col umm nane="publ i sher _nane" type="VARCHAR"/ >
<col um nane="publ i sher _ww' type="VARCHAR"/>
<col umm nane="publ i sher _emai|l" type="VARCHAR"/>
</t abl e>
</ dat abase>

<cl assmappi ng name="Book" dat abase="books" tabl e="book">
<fi el dmappi ng name="id" col um="book_id"/>
<fi el dmappi ng name="nane" col unm="book_nane"/>
<fi el dmappi ng name="title" colum="book title"/>
<fi el dmappi ng nanme="synapsi s" col umm="book_synapsi s"/>
<fi el dmappi ng nanme="sanpl eChapter” col utm="book_sanpl e_chapter"”
adapt er="Stri ngBuffer ToCl obAdapter"/>
<fi el dmappi ng name="publ i sherld" col um="book_publisher_id"/>
<rel ati onshi pnappi ng cardi nality="1" rel atedcl ass="Publisher"
mast erfi el d="publisher" isstorecascaded="true"
i sdel et ecascaded="fal se" isretrievecascaded="true"
bi ndi ngs="publisherld = id"/>
</ cl assnmappi ng>

<cl assmappi ng name="Publ i sher"” database="books" tabl e="publisher">
<fi el dmappi ng name="id" col um="publisher_id"/>
<fi el dmappi ng name="nanme" col um="publ i sher_nanme"/>
<fi el dmappi ng name="ww/' col um="publisher_ww'/>
<fi el dmappi ng name="enmi |l " col um="publisher_enail"/>
</ cl assnmappi ng>

<identitygenerator id="default"
bui | der ="j akamar . j dbc. | dentit yCGener at or Fr onSel ect MaxBui | der"/ >

</ per si st enceconfi gurati on>

99




9.3. Appendix C: Sample Logging Configuration
Sample logging configuration file.

# Set root logger priority to DEBUG and its only appender to Al.
| 0og4j . root Cat egor y=DEBUG, Al

# Set the logger priority for the jakamar.jdbc package to | NFO
# and its only appender to Al.

| og4j . category.jakamar.jdbc=I NFO, A2

# Al is set to be a RollingFileAppender that nmintains severa
# backup files fromrecent history

| og4j . appender. Al=or g. apache. | og4j . Rol I i ngFi | eAppender

| og4j . appender. Al. Fil e=test. | og

| og4j . appender. Al. MaxFi | eSi ze=5MB

| og4j . appender. Al. MaxBackupl ndex=10

# The other |ogging appender, A2, wites to the console.
| og4j . appender. A2=or g. apache. | og4j . Fi | eAppender
| og4j . appender. Al. Fi | e=Syst em out

# Specify the format of |oggi ng nessages.

# Exanpl e out put:

# 17:17: 14 DEBUG j akanmar. Persi st enceBroker Factory.create: 133 - "d.xm"
| og4j . appender. Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender. Al. | ayout. Conver si onPat t er n=%l{ HH: nm ss} % 5p %C. %vt % -
%P

# Exanpl e out put:

# 2001-11-12 20: 26: 01 DEBUG j akamar . Per si st enceBr oker Factory - "d.xm"

| og4j . appender. A2. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender. A2. | ayout . Conver si onPatt er n=%d{yyyy- Mt dd HH: mm ss} % 5p
% - %P

100




